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Fixed-Point Data Types

1-2

In digital hardware, numbers are stored in binary words. A binary word is a fixed-length
sequence of bits (1's and 0's). How hardware components or software functions interpret
this sequence of 1's and 0's is defined by the data type.

Binary numbers are represented as either fixed-point or floating-point data types. This
chapter discusses many terms and concepts relating to fixed-point numbers, data types,
and mathematics.

A fixed-point data type is characterized by the word length in bits, the position of the
binary point, and whether it is signed or unsigned. The position of the binary point is the
means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a generalized fixed-point number (either signed
or unsigned) is shown below:

b1 | buwi-g bs | by | b3 | by | by | by

MSB I LSB
binary point

where

b; is the i'® binary digit.

*  wl is the word length in bits.

* by 1s the location of the most significant, or highest, bit (MSB).

*  bgis the location of the least significant, or lowest, bit (LSB).

* The binary point is shown four places to the left of the LSB. In this example,

therefore, the number is said to have four fractional bits, or a fraction length of four.

Fixed-point data types can be either signed or unsigned. Signed binary fixed-point
numbers are typically represented in one of three ways:

+ Sign/magnitude

* One's complement

* Two's complement



Fixed-Point Data Types

Two's complement is the most common representation of signed fixed-point numbers and
is the only representation used by Fixed-Point Designer™ documentation.
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Scaling

1-4

Fixed-point numbers can be encoded according to the scheme

real-world value = (slope X integer ) + bias
where the slope can be expressed as
slope = slope adjustment factor x 2!1x¢d exponent

The integer is sometimes called the stored integer. This is the raw binary number,

in which the binary point assumed to be at the far right of the word. In Fixed-Point
Designer documentation, the negative of the fixed exponent is often referred to as the
fraction length.

The slope and bias together represent the scaling of the fixed-point number. In a number
with zero bias, only the slope affects the scaling. A fixed-point number that is only scaled
by binary point position is equivalent to a number in [Slope Bias] representation that
has a bias equal to zero and a slope adjustment factor equal to one. This is referred to as
binary point-only scaling or power-of-two scaling:

real-world value = 2f1xed exponent

Xinteger
or

real-world value = 27 ractionlength o 50 o ep

Fixed-Point Designer software supports both binary point-only scaling and [Slope Bias]
scaling.

Note For examples of binary point-only scaling, see the Fixed-Point Designer Binary-
Point Scaling example.

For an example of how to compute slope and bias in MATLAB®, see “Compute Slope and
Bias” on page 1-5




Compute Slope and Bias

Compute Slope and Bias

In this section...

“What Is Slope Bias Scaling?” on page 1-5
“Compute Slope and Bias” on page 1-5

What Is Slope Bias Scaling?

With slope bias scaling, you must specify the slope and bias of a number. The real-world
value of a slope bias scaled number can be represented by:

real-world value = (slopexinteger )+ bias

slope = slope adjustment factorx 2/%¢d exponent

Compute Slope and Bias

Start with the endpoints that you want, signedness, and word length.

lower_bound 999;
upper_bound 1000;
is_signed = true;
word_length = 16;

To find the range of a Fi object with a specified word length and signedness, use the
range function.

[Q_min, Q_max] = range(Fi([1, is_signed, word_length, 0));
To find the slope and bias, solve the system of equations:

lower_bound = slope * Q_min + bias

upper_bound slope * Q _max + bias

Rewrite these equations in matrix form.
lower bound Q min 1| |slope
upper bound Q max 1 bias

1-5
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Solve for the slope and bias.

A = double ([Q_min, 1; Q _max, 1]);
b = double ([lower_bound; upper_bound]);
X = A\b;

format long g

To find the slope, or precision, call the first element of the slope-bias vector, X.
slope = x(1)
slope =
1.52590218966964e-05
To find the bias, call the second element of vector X.

x(2)

bias

bias
999.500007629511

Create a numerictype object with slope bias scaling.

T

numerictype(is_signed, word_length, slope, bias)

T =

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16
Slope: 1.5259021896696368e-5
Bias: 999.500007629511

Create a Fi object with numerictype T.

a = Fi(999.255, T)
a =
999.254993514916

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed



Compute Slope and Bias

WordLength: 16
Slope: 1.5259021896696368e-5
Bias: 999.500007629511

Verify that the Fi object that you created has the correct specifications by finding the
range of a.

range(a)
ans =
999 1000

DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16
Slope: 1.5259021896696368e-5
Bias: 999.500007629511
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Precision and Range

1-8

In this section...

“Range” on page 1-8

“Precision” on page 1-9

Note: You must pay attention to the precision and range of the fixed-point data types
and scalings you choose in order to know whether rounding methods will be invoked or if
overflows or underflows will occur.

Range

The range is the span of numbers that a fixed-point data type and scaling can represent.
The range of representable numbers for a two's complement fixed-point number of word

length wl, scaling S and bias B is illustrated below:

S-(-2*")+B B S-(2'-1)+B

| | |
I : I - I
negative numbers positive numbers

For both signed and unsigned fixed-point numbers of any data type, the number of
different bit patterns is 2.

For example, in two's complement, negative numbers must be represented as well as

. . _1 . .
zero, so the maximum value is 2/ — 1. Because there is only one representation for zero,
there are an unequal number of positive and negative numbers. This means there is a

representation for —2"'~! but not for 2"/~
For slope = 1 and bias = 0:

_211)1*1 O 2wl—1 _ 1
|
I

negative numbers positive numbers
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Overflow Handling

Because a fixed-point data type represents numbers within a finite range, overflows and
underflows can occur if the result of an operation is larger or smaller than the numbers
in that range.

Fixed-Point Designer software allows you to either saturate or wrap overflows.
Saturation represents positive overflows as the largest positive number in the range
being used, and negative overflows as the largest negative number in the range being
used. Wrapping uses modulo arithmetic to cast an overflow back into the representable
range of the data type.

When you create a Fi object, any overflows are saturated. The OverflowAction
property of the default fimath is saturate. You can log overflows and underflows by
setting the LoggingMode property of the Fipref object to on. Refer to “LoggingMode”
for more information.

Precision

The precision of a fixed-point number is the difference between successive values
representable by its data type and scaling, which is equal to the value of its least
significant bit. The value of the least significant bit, and therefore the precision of the
number, is determined by the number of fractional bits. A fixed-point value can be
represented to within half of the precision of its data type and scaling.

For example, a fixed-point representation with four bits to the right of the binary point
has a precision of 2™ or 0.0625, which is the value of its least significant bit. Any number
within the range of this data type and scaling can be represented to within (2*)/2 or
0.03125, which is half the precision. This is an example of representing a number with
finite precision.

Rounding Methods

When you represent numbers with finite precision, not every number in the available
range can be represented exactly. If a number cannot be represented exactly by the
specified data type and scaling, a rounding method is used to cast the value to a
representable number. Although precision is always lost in the rounding operation, the
cost of the operation and the amount of bias that is introduced depends on the rounding
method itself. To provide you with greater flexibility in the trade-off between cost and
bias, Fixed-Point Designer software currently supports the following rounding methods:

1-9
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* Ceiling rounds to the closest representable number in the direction of positive
infinity.
+ Convergent rounds to the closest representable number. In the case of a tie,

convergent rounds to the nearest even number. This is the least biased rounding
method provided by the toolbox.

+  Fix rounds to the closest representable number in the direction of zero.

* Floor, which is equivalent to two's complement truncation, rounds to the closest
representable number in the direction of negative infinity.

* Nearest rounds to the closest representable number. In the case of a tie, nearest
rounds to the closest representable number in the direction of positive infinity. This
rounding method is the default for i object creation and Fi arithmetic.

* Round rounds to the closest representable number. In the case of a tie, the round
method rounds:
+ Positive numbers to the closest representable number in the direction of positive
infinity.
Negative numbers to the closest representable number in the direction of negative
infinity.
Choosing a Rounding Method

Each rounding method has a set of inherent properties. Depending on the requirements
of your design, these properties could make the rounding method more or less desirable
to you. By knowing the requirements of your design and understanding the properties of
each rounding method, you can determine which is the best fit for your needs. The most
important properties to consider are:

+  Cost — Independent of the hardware being used, how much processing expense does
the rounding method require?
Low — The method requires few processing cycles.
Moderate — The method requires a moderate number of processing cycles.

* High — The method requires more processing cycles.

Note: The cost estimates provided here are hardware independent. Some processors
have rounding modes built-in, so consider carefully the hardware you are using before
calculating the true cost of each rounding mode.




Precision and Range

Bias — What is the expected value of the rounded values minus the original values:
E(6-06)?

E(é - 9) <0 — The rounding method introduces a negative bias.
E(6 -6) =0 — The rounding method is unbiased.

E(é - 9) >0 — The rounding method introduces a positive bias.

Possibility of Overflow — Does the rounding method introduce the possibility of
overflow?

Yes — The rounded values may exceed the minimum or maximum representable
value.

No — The rounded values will never exceed the minimum or maximum
representable value.

1-11
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The following table shows a comparison of the different rounding methods available in

the Fixed-Point Designer product.

Fixed-Point Designer Cost Bias Possibility of Overflow
Rounding Mode
Ceiling Low Large positive Yes
Convergent High Unbiased Yes
Zero Low Large positive for negative |No
samples
+  Unbiased for samples with
evenly distributed positive
and negative values
+ Large negative for positive
samples
Floor Low Large negative No
Nearest Moderate Small positive Yes
Round High * Small negative for negative |Yes
samples
*  Unbiased for samples with
evenly distributed positive
and negative values
Small positive for positive
samples
Simplest Low Depends on the operation No
(Simulink® only)
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Arithmetic Operations

In this section...
“Modulo Arithmetic” on page 1-13
“Two's Complement” on page 1-14

“Addition and Subtraction” on page 1-15

“Multiplication” on page 1-16

“Casts” on page 1-22

Note: These sections will help you understand what data type and scaling choices result
in overflows or a loss of precision.

Modulo Arithmetic

Binary math is based on modulo arithmetic. Modulo arithmetic uses only a finite set of
numbers, wrapping the results of any calculations that fall outside the given set back
into the set.

For example, the common everyday clock uses modulo 12 arithmetic. Numbers in this
system can only be 1 through 12. Therefore, in the “clock” system, 9 plus 9 equals 6. This
can be more easily visualized as a number circle:

1-13
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9.. ... plus 9 more ...

... equals 6.

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic results
that fall outside this range are wrapped “around the circle” to either O or 1.

Two's Complement

Two's complement is a way to interpret a binary number. In two's complement, positive
numbers always start with a 0 and negative numbers always start with a 1. If the
leading bit of a two's complement number is 0, the value is obtained by calculating the
standard binary value of the number. If the leading bit of a two's complement number
is 1, the value is obtained by assuming that the leftmost bit is negative, and then
calculating the binary value of the number. For example,

01=0+2% =1
11= ((—21)+(20)) —(2+1) =1

To compute the negative of a binary number using two's complement,

1 Take the one's complement, or “flip the bits.”
2 Add a 2~(-FL) using binary math, where FL is the fraction length.
3 Discard any bits carried beyond the original word length.
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For example, consider taking the negative of 11010 (-6). First, take the one's complement
of the number, or flip the bits:

11010 - 00101

Next, add a 1, wrapping all numbers to 0 or 1:

00101
+1

00110 (6)

Addition and Subtraction

The addition of fixed-point numbers requires that the binary points of the addends be
aligned. The addition is then performed using binary arithmetic so that no number other
than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

010010.1 185
+0110.110 (6.75)

011001.010 (25.25)

Fixed-point subtraction is equivalent to adding while using the two's complement value
for any negative values. In subtraction, the addends must be sign-extended to match
each other's length. For example, consider subtracting 0110.110 (6.75) from 010010.1
(18.5):

010010.100 (18.5)
-0110.110 (6.75)

The default fimath has a value of 1 (true) for the CastBeforeSum property. This casts
addends to the sum data type before addition. Therefore, no further shifting is necessary
during the addition to line up the binary points.

If CastBeforeSum has a value of O (false), the addends are added with full precision
maintained. After the addition the sum is then quantized.
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Multiplication

The multiplication of two's complement fixed-point numbers is directly analogous to
regular decimal multiplication, with the exception that the intermediate results must be
sign-extended so that their left sides align before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

10.11 (-1.25)

The extro 1 011 (3)
is the result ufxl 1011
NECessry sign

Extension. 1011

1100.01 (-3.75)

\

The number of froetionol bits of the
result is the sum of the number of
fructional bits of the foctors.

Multiplication Data Types

The following diagrams show the data types used for fixed-point multiplication using
Fixed-Point Designer software. The diagrams illustrate the differences between the data
types used for real-real, complex-real, and complex-complex multiplication.

Real-Real Multiplication

The following diagram shows the data types used by the toolbox in the multiplication of
two real numbers. The software returns the output of this operation in the product data
type, which is governed by the Fimath object ProductMode property.

Input a

Product
data type data type
MULTIPLIER "
—¥ ac )
Input ¢
data type
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Real-Complex Multiplication

The following diagram shows the data types used by the toolbox in the multiplication of a
real and a complex fixed-point number. Real-complex and complex-real multiplication are
equivalent. The software returns the output of this operation in the product data type,
which is governed by the Fimath object ProductMode property:

Input a
data type 3
» ac
_ MULTIPLIER Product
data
: WPE%HEH\_ ac+adi
_/’_
Input c+di »{Im
c
fetatpe e ! MuLTIPLER
S~ mF— ad

Complex-Complex Multiplication

The following diagram shows the multiplication of two complex fixed-point numbers. The
software returns the output of this operation in the sum data type, which is governed by
the Fimath object SumMode property. The intermediate product data type is determined
by the Fimath object ProductMode property.

1-17
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Product
data type
Imput
a+hi 5 fac-bd)
data type Re i, +
—-—_C b | MuLTIPLIER 5 [ (adeb)i
Im [ | CAST :—|+ ac-bd
-----\, SUBTRACTOR
b, | CAST
MULTIPLIER -—--
e bd Sum or Product Re ~_ N
data type’ Im —""
a, ad - ___
' MULTIPLIER 1, CAST :
I
d | e---4 ! ADDER
Input === | adtbe
oidi b | CAST
data type [ _—Re |- - MULTIPLIER 5"\ | ==~~~ Sum
—_—
™ Im data type
d Product

data type

1 Sum data type if CastBeforeSum is true,
Product data type if CastBeforeSum is false

When the Fimath object CastBeforeSum property is true, the casts to the sum data
type are present after the multipliers in the preceding diagram. In C code, this is
equivalent to

acc=ac;
acc-=bd;

for the subtractor, and

acc=ad;
acc+=bc;

for the adder, where acc is the accumulator. When the CastBeforeSum property is

false, the casts are not present, and the data remains in the product data type before
the subtraction and addition operations.
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Multiplication with fimath

In the following examples, let

F = fimath("ProductMode®, "FullPrecision”, ...
"SumMode®, "FullPrecision®);
T1 = numerictype(“WordLength®,24,"FractionLength®,20);

T2

Real*Redl

numerictype("WordLength®,16, "FractionLength®,10);

Notice that the word length and fraction length of the result z are equal to the sum of the
word lengths and fraction lengths, respectively, of the multiplicands. This is because the
Ffimath SumMode and ProductMode properties are set to Ful lPrecision:

Fipref;

P =
P_FimathDisplay = "none”;
X =

fi(s, T1, F)

X

DataTypeMode:
Signedness:
WordLength:

FractionLength:

y = fi(10, T2, F)

y =
10
DataTypeMode:
Signedness:
WordLength:
FractionLength:
z = xX*y
zZ =

Fixed-point: binary point scaling
Signed

24

20

Fixed-point: binary point scaling
Signed

16

10
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50

DataTypeMode:
Signedness:
WordLength:

FractionLength:

Real*Complex

Fixed-point: binary point scaling
Signed

40

30

Notice that the word length and fraction length of the result z are equal to the sum of the
word lengths and fraction lengths, respectively, of the multiplicands. This is because the
Ffimath SumMode and ProductMode properties are set to Ful IPrecision:

x = fi(5,T1,F)
X =
5
DataTypeMode:
Signedness:
WordLength:
FractionLength:
y = fi(10+2i,T2,F)
y:

10.0000 + 2.0000i

DataTypeMode:
Signedness:
WordLength:
FractionLength:
z = xX*y
zZ =

50.0000 +10.0000i

Fixed-point: binary point scaling
Signed

24

20

Fixed-point: binary point scaling
Signed

16

10
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DataTypeMode:
Signedness:
WordLength:

FractionLength:

Complex*Complex

Fixed-point: binary point scaling
Signed

40

30

Complex-complex multiplication involves an addition as well as multiplication. As a
result, the word length of the full-precision result has one more bit than the sum of the
word lengths of the multiplicands:

x = Fi(6+6i1,T1,F)
X =
5.0000 + 6.0000i
DataTypeMode:
Signedness:
WordLength:
FractionLength:
y = fi(10+2i,T2,F)
y:

10.0000 + 2.0000i

DataTypeMode:
Signedness:
WordLength:
FractionLength:
z = xX*y
zZ =

38.0000 +70.0000i

DataTypeMode:
Signedness:
WordLength:

Fixed-point: binary point scaling
Signed

24

20

Fixed-point: binary point scaling
Signed

16

10

Fixed-point: binary point scaling
Signed
41
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FractionLength: 30

Casts

The Fimath object allows you to specify the data type and scaling of intermediate sums
and products with the SumMode and ProductMode properties. It is important to keep
in mind the ramifications of each cast when you set the SumMode and ProductMode
properties. Depending upon the data types you select, overflow and/or rounding might
occur. The following two examples demonstrate cases where overflow and rounding can
occur.

Note For more examples of casting, see “Cast fi Objects” on page 2-12.

Casting from a Shorter Data Type to a Longer Data Type

Consider the cast of a nonzero number, represented by a 4-bit data type with two
fractional bits, to an 8-bit data type with seven fractional bits:

C T3 T ]

source The source bits must be shifted up to match the
binary point position of the destination data type.

L ¢ [ I [ [ [ | |

destination

g s s
e -

This bit from the source data

type “falls off” the high end with
the shift up. Overflow might occur.
The result will saturate or wrap.

These bits of the destination
data type are padded with
O’'sor1’s.

As the diagram shows, the source bits are shifted up so that the binary point matches
the destination binary point position. The highest source bit does not fit, so overflow
might occur and the result can saturate or wrap. The empty bits at the low end of the
destination data type are padded with either O's or 1's:
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+ If overflow does not occur, the empty bits are padded with 0's.
+ If wrapping occurs, the empty bits are padded with 0's.

+ If saturation occurs,

* The empty bits of a positive number are padded with 1's.
* The empty bits of a negative number are padded with 0's.

You can see that even with a cast from a shorter data type to a longer data type, overflow
can still occur. This can happen when the integer length of the source data type (in this
case two) is longer than the integer length of the destination data type (in this case one).
Similarly, rounding might be necessary even when casting from a shorter data type to a
longer data type, if the destination data type and scaling has fewer fractional bits than

the source.
Casting from a Longer Data Type to a Shorter Data Type

Consider the cast of a nonzero number, represented by an 8-bit data type with seven
fractional bits, to a 4-bit data type with two fractional bits:

L o 1 1 T [ [ [ |

source The source bits must be shifted down to match the
binary point position of the destination data type.

C T T 1

destination
| | r— T T 7T T —"
. L L1111
These bits from the source
) o do not fit into the destination
There is no value for this bit data type. The result is rounded.
from the source, so the result

must be sign-extended to fill
the destination data type.

As the diagram shows, the source bits are shifted down so that the binary point matches
the destination binary point position. There is no value for the highest bit from the
source, so sign extension is used to fill the integer portion of the destination data type.
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The bottom five bits of the source do not fit into the fraction length of the destination.
Therefore, precision can be lost as the result is rounded.

In this case, even though the cast is from a longer data type to a shorter data type, all
the integer bits are maintained. Conversely, full precision can be maintained even if you
cast to a shorter data type, as long as the fraction length of the destination data type is
the same length or longer than the fraction length of the source data type. In that case,
however, bits are lost from the high end of the result and overflow can occur.

The worst case occurs when both the integer length and the fraction length of the
destination data type are shorter than those of the source data type and scaling. In that
case, both overflow and a loss of precision can occur.
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fi Objects and C Integer Data Types

In this section...

“Integer Data Types” on page 1-25
“Unary Conversions” on page 1-27

“Binary Conversions” on page 1-28

“Overflow Handling” on page 1-30

Note: The sections in this topic compare the Fi object with fixed-point data types and

operations in C. In these sections, the information on ANSI® C is adapted from Samuel P.
Harbison and Guy L. Steele Jr., C: A Reference Manual, 3rd ed., Prentice Hall, 1991.

Integer Data Types

This section compares the numerical range of Fi integer data types to the minimum
numerical range of C integer data types, assuming a “Two's Complement” on page 1-14
representation.

C Integer Data Types

Many C compilers support a two's complement representation of signed integer data
types. The following table shows the minimum ranges of C integer data types using a
two's complement representation. The integer ranges can be larger than or equal to the
ranges shown, but cannot be smaller. The range of a long must be larger than or equal
to the range of an Int, which must be larger than or equal to the range of a short.

In the two's complement representation, a signed integer with n bits has a range from

e T | , inclusive. An unsigned integer with n bits has a range from 0 to 2" -1,
inclusive. The negative side of the range has one more value than the positive side, and
zero is represented uniquely.

1-25



1 Fixed-Point Concepts

Integer Type Minimum Maximum
signed char -128 127
unsigned char 0 255

short int —-32,768 32,767
unsigned short 0 65,535

int —32,768 32,767
unsigned int 0 65,535

long int —2,147,483,648 2,147,483,647
unsigned long 0 4,294,967,295

fi Integer Data Types

The following table lists the numerical ranges of the integer data types of the Fi object,
in particular those equivalent to the C integer data types. The ranges are large enough
to accommodate the two's complement representation, which is the only signed binary

encoding technique supported by Fixed-Point Designer software.

. Word | Fraction . . . Closest ANSI
Constructor Signed length | Length Minimum Maximum C Equivalent
n
fi(x,1,n,0) Yes (2 to 0 _on-1 =1 _4 Not applicable
65,535)
n
fi(x,0,n,0) No (2 to 0 0 M _1 Not applicable
65,535)
fi(x,1,8,0) Yes 8 -128 127 signed char
f1(x,0,8,0) No 8 0 255 unsigned char
fi(x,1,16,0)| Yes 16 -32,768 32,767 short int
. unsigned
fi1(x,0,16,0) No 16 0 0 65,535 short
fi(x,1,32,0) Yes 32 0 9.147,483,648 2,147,483,647 long int
fi(x,0,32,0) No 32 0 0 4,294,967,295 | unsigned long
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Unary Conversions

Unary conversions dictate whether and how a single operand is converted before an
operation is performed. This section discusses unary conversions in ANSI C and of i
objects.

ANSI C Usual Unary Conversions

Unary conversions in ANSI C are automatically applied to the operands of the unary !,
—, ~, and * operators, and of the binary << and >> operators, according to the following

table:
Original Operand Type ANSI C Conversion
char or short int
unsigned char or unsigned short intorunsigned int!
float float
Array of T Pointer to T
Function returning T Pointer to function returning T

'If type int cannot represent all the values of the original data type without overflow,
the converted type is unsigned int.
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fi Usual Unary Conversions

The following table shows the i unary conversions:

C Operator fi Equivalent fi Conversion

Ix ~X = not(x) Result is logical.

~X bitcmp(x) Result is same numeric type as operand.

*X No equivalent Not applicable

X<<n bitshift(x,n) Result is same numeric type as operand. Round mode is

positive n always Floor. Overflow mode is obeyed. 0-valued bits are

shifted in on the right.

xX>>n bitshift(x,-n) |Resultis same numeric type as operand. Round mode is
always Floor. Overflow mode is obeyed. 0-valued bits are
shifted in on the left if the operand is unsigned or signed
and positive. 1-valued bits are shifted in on the left if the
operand is signed and negative.

+X +X Result is same numeric type as operand.

-X -X Result is same numeric type as operand. Overflow mode
is obeyed. For example, overflow might occur when you
negate an unsigned Fi or the most negative value of a
signed Fi.

1-28

Binary Conversions

This section describes the conversions that occur when the operands of a binary operator

are different data types.

ANSI C Usual Binary Conversions

In ANSI C, operands of a binary operator must be of the same type. If they are different,
one is converted to the type of the other according to the first applicable conversion in the

following table:

Type of One Operand Type of Other Operand ANSI C Conversion
long double Any long double
double Any double

float Any float
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Type of One Operand Type of Other Operand ANSI C Conversion
unsigned long Any unsigned long

long unsigned long or unsigned long'
long int long

unsigned int or unsigned unsigned

int int int

'Type long is only used if it can represent all values of type unsigned.

fi Usual Binary Conversions

When one of the operands of a binary operator (+, —, *, .*) is a i object and the other
is a MATLAB built-in numeric type, then the non-fi operand is converted to a i object
before the operation is performed, according to the following table:

Type of One | Type of Other Properties of Other Operand After Conversion to a fi Object
Operand Operand
Ti double or + Signed = same as the original i operand
single * WordLength = same as the original fi operand
* FractionLength = set to best precision possible
Ti int8 + Signed=1
* WordLength =8
* FractionLength=0
Ti uint8 + Signed=0
* WordLength =8
* FractionLength=0
Ti intl6 + Signed=1
* WordLength =16
* FractionLength=0
Ti uintl6 + Signed=0
* WordLength =16
* FractionLength=0
Ti int32 + Signed=1
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Type of One | Type of Other Properties of Other Operand After Conversion to a fi Object
Operand Operand

* WordLength =32

* FractionLength=0
Ti uint32 + Signed=0

* WordLength =32

* FractionLength=0
fi int64 + Signed=1

* WordLength =64

* FractionLength=0
fi uint64 + Signed=0

* WordLength =64

* FractionLength=0

Overflow Handling

1-30

The following sections compare how ANSI C and Fixed-Point Designer software handle
overflows.

ANSI C Overflow Handling

In ANSI C, the result of signed integer operations is whatever value is produced by the
machine instruction used to implement the operation. Therefore, ANSI C has no rules for
handling signed integer overflow.

The results of unsigned integer overflows wrap in ANSI C.
fi Overflow Handling

Addition and multiplication with Fi objects yield results that can be exactly represented
by a Fi object, up to word lengths of 65,535 bits or the available memory on your
machine. This is not true of division, however, because many ratios result in infinite
binary expressions. You can perform division with Fi objects using the divide function,
which requires you to explicitly specify the numeric type of the result.

The conditions under which a Fi object overflows and the results then produced
are determined by the associated fimath object. You can specify certain overflow
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characteristics separately for sums (including differences) and products. Refer to the

following table:

fimath Object Properties Property Value Description

Related to Overflow Handling

OverflowAction "saturate- Overflows are saturated to the maximum or
minimum value in the range.

"wrap” Overflows wrap using modulo arithmetic if

unsigned, two's complement wrap if signed.

ProductMode "FullPrecision*® Full-precision results are kept. Overflow

does not occur. An error is thrown if the
resulting word length is greater than
MaxProductWordLength.

The rules for computing the resulting product
word and fraction lengths are given in
“fimath Object Properties” on page 4-5 in

the Property Reference.

"KeepLSB*

The least significant bits of the product are
kept. Full precision is kept, but overflow

is possible. This behavior models the C
language integer operations.

The ProductWordLength property
determines the resulting word length. If
ProductWordLength is greater than is
necessary for the full-precision product, then
the result is stored in the least significant
bits. If ProductWordLength is less than is
necessary for the full-precision product, then
overflow occurs.

The rule for computing the resulting product
fraction length is given in “fimath Object
Properties” on page 4-5 in the Property
Reference.

"KeepMSB*

The most significant bits of the product are
kept. Overflow is prevented, but precision
may be lost.
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fimath Object Properties
Related to Overflow Handling

Property Value

Description

The ProductWordLength property
determines the resulting word length. If
ProductWordLength is greater than is
necessary for the full-precision product, then
the result is stored in the most significant
bits. If ProductWordLength is less than is
necessary for the full-precision product, then
rounding occurs.

The rule for computing the resulting product
fraction length is given in “fimath Object
Properties” on page 4-5 in the Property
Reference.

"SpecifyPrecision”

You can specify both the word length and the
fraction length of the resulting product.

ProductWordLength

Positive integer

The word length of product results when
ProductMode is "KeepLSB*, "KeepMSB*, or
"SpecifyPrecision”.

MaxProductWordLength

Positive integer

The maximum product word length allowed
when ProductMode is "Ful IPrecision”.
The default is 65,535 bits. This property can
help ensure that your simulation does not
exceed your hardware requirements.

ProductFractionLength

Integer

The fraction length of product results when
ProductMode is "Specify Precision®.

SumMode

"FullPrecision”

Full-precision results are kept. Overflow
does not occur. An error is thrown if the
resulting word length is greater than
MaxSumWordLength.

The rules for computing the resulting sum
word and fraction lengths are given in
“fimath Object Properties” on page 4-5 in
the Property Reference.
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fimath Object Properties
Related to Overflow Handling

Property Value

Description

“KeepLSB*

The least significant bits of the sum are
kept. Full precision is kept, but overflow
1s possible. This behavior models the C
language integer operations.

The SumWordLength property determines
the resulting word length. If SumWordLength
is greater than is necessary for the full-
precision sum, then the result is stored in the
least significant bits. If SumWordLength is
less than is necessary for the full-precision
sum, then overflow occurs.

The rule for computing the resulting sum
fraction length is given in “fimath Object
Properties” on page 4-5 in the Property
Reference.

"KeepMSB*

The most significant bits of the sum are kept.
Overflow is prevented, but precision may be
lost.

The SumWordLength property determines
the resulting word length. If SumWordLength
is greater than is necessary for the full-
precision sum, then the result is stored in the
most significant bits. If SumWordLength is
less than is necessary for the full-precision
sum, then rounding occurs.

The rule for computing the resulting sum
fraction length is given in “fimath Object
Properties” on page 4-5 in the Property
Reference.

"SpecifyPrecision”

You can specify both the word length and the
fraction length of the resulting sum.
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fimath Object Properties Property Value Description

Related to Overflow Handling

SumWordLength Positive integer The word length of sum results when
SumMode is "KeepLSB*", "KeepMSB*, or
"SpecifyPrecision”.

MaxSumWordLength Positive integer The maximum sum word length allowed
when SumMode is "FullPrecision®. The
default is 65,535 bits. This property can help
ensure that your simulation does not exceed
your hardware requirements.

SumFractionLength Integer The fraction length of sum results when

SumMode is "SpecifyPrecision”.

1-34




Working with fi Objects

+ “Ways to Construct fi Objects” on page 2-2
+ “Cast fi Objects” on page 2-12

+ “fi Object Properties” on page 2-18

* “fi Object Functions” on page 2-24
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Ways to Construct fi Objects

2-2

In this section...

“Types of fi Constructors” on page 2-2

“Examples of Constructing fi Objects” on page 2-3

Types of fi Constructors

You can create Fi objects using Fixed-Point Designer software in any of the following
ways:

* You can use the Fi constructor function to create a Fi object.

* You can use the sFi constructor function to create a new signed Fi object.

* You can use the ufi constructor function to create a new unsigned i object.

* You can use any of the Fi constructor functions to copy an existing i object.

To get started, to create a Fi object with the default data type and a value of O:

a = fi(0)

a =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

This constructor syntax creates a signed Fi object with a value of 0, word length of
16 bits, and fraction length of 15 bits. Because you did not specify any fimath object
properties in the Fi constructor, the resulting Fi object a has no local Fimath.

To see all of the Fi, sfi, and ufi constructor syntaxes, refer to the respective reference
pages.

For information on the display format of i objects, refer to “View Fixed-Point Data”.
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Examples of Constructing fi Objects

The following examples show you several different ways to construct Fi objects. For
other, more basic examples of constructing Fi objects, see the Examples section of the
following constructor function reference pages:

- fi
+ sfi
+ ufi

Note: The fi constructor creates the i object using a RoundingMethod of Nearest and
an OverflowAction of Saturate. If you construct a i from floating-point values, the
default RoundingMethod and OverflowAction property settings are not used.

Constructing a fi Object with Property Name/Property Value Pairs

You can use property name/property value pairs to set i and Fimath object properties
when you create the Fi object:

a = fi(pi, “RoundingMethod®,"Floor®, “OverflowAction®, "Wrap®)

a =
3.1415

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

RoundingMethod: Floor
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision

You do not have to specify every Fimath object property in the Fi constructor. The Fi
object uses default values for all unspecified Fimath object properties.

+ If you specify at least one Fimath object property in the Fi constructor, the Fi
object has a local Fimath object. The Fi object uses default values for the remaining
unspecified Fimath object properties.
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+ If you do not specify any Fimath object properties in the i object constructor, the Fi
object uses default Fimath values.

Constructing a fi Object Using a numerictype Object

You can use a humerictype object to define a Fi object:

T = numerictype
T =
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15
a = fi(pi, T)
a =

1.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

You can also use a Fimath object with a numerictype object to define a Fi object:

F = fimath("RoundingMethod®, “Nearest®,...
“OverflowAction®, "Saturate”,...
*ProductMode”®, "FullPrecision”, ...
"SumMode®, "FullPrecision®)

F =

RoundingMethod: Nearest

OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision

a = fi(pi, T, F)
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1.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

RoundingMethod: Nearest

OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision

Note The syntaxa = Fi(pi,T,F) isequivalenttoa = Fi(pi,F,T). You can use both
statements to define a Fi object using a Fimath object and a numerictype object.

Constructing a fi Object Using a fimath Object

You can create a Fi object using a specific Fimath object. When you do so, a local
Fimath object is assigned to the Fi object you create. If you do not specify any

numer ictype object properties, the word length of the i object defaults to 16 bits. The
fraction length is determined by best precision scaling:

F = fimath("RoundingMethod®, "Nearest”,...
"OverflowAction®, "Saturate”,...
"ProductMode”, "FullPrecision”, ...
"SumMode* , "Ful IPrecision™)

F =

RoundingMethod: Nearest
OverflowAction: Saturate

ProductMode: FullPrecision

SumMode: FullPrecision

F_OverflowAction = “Wrap®

F =

RoundingMethod: Nearest



2 Working with fi Objects

OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision

a = fi(pi, F)
a:
3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision

You can also create Fi objects using a fimath object while specifying various
numerictype properties at creation time:

b = fi(pi, 0, F)
b =
3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16
FractionLength: 14

RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision

c = fi(pi, 0, 8, F)

3.1406
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DataTypeMode:
Signedness:
WordLength:

FractionLength:

RoundingMethod:
OverflowAction:
ProductMode:
SumMode:

o
1

fi(pi, 0, 8, 6, F)

3.1406

DataTypeMode:
Signedness:
WordLength:

FractionLength:

RoundingMethod:
OverflowAction:
ProductMode:
SumMode:

Fixed-point: binary point scaling

Unsigned
8
6

Nearest

Wrap
FullPrecision
FullPrecision

Fixed-point: binary point scaling

Unsigned
8
6

Nearest

wrap
FullPrecision
FullPrecision

Building fi Object Constructors in a GUI

When you are working with files in MATLAB, you can build your Fi object constructors
using the Insert fi Constructor dialog box. After specifying the value and properties of
the Fi object in the dialog box, you can insert the prepopulated Fi object constructor at a

specific location in your file.

For example, to create a signed Fi object with a value of pi, a word length of 16 bits and a

fraction length of 13 bits:

1 On the Home tab, in the File section, click New > Script to open the MATLAB

Editor.

Fel -
On the Editor tab, in the Edit section, click in the Insert button group.

Click Insert fi... to open the Insert fi Constructor dialog box.

3 Use the edit boxes and drop-down menus to specify the following properties of the Fi

object:
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+ Value = pi

+ Data type mode = Fixed-point: binary point scaling
Signedness = Signed

* Word length = 16

+ Fraction length =13

-

A\ Insert fi Constructor l — | |i3-r

Value: | pi
For example, pi. 2718, or x/2
nurnerictype
Data type mede: | Fixed-peint: binary point scaling =
Signedness: :Signed v:
Word length: 16

Fraction length: |13

0K || Cancel || Help

L -

4 Toinsert the Fi object constructor in your file, place your cursor at the desired
location in the file, and click OK on the Insert fi Constructor dialog box. Clicking
OK closes the Insert fi Constructor dialog box and automatically populates the Fi
object constructor in your file:

7 fi(pi, 1, 1&, 13)

Determining Property Precedence

The value of a property is taken from the last time it is set. For example, create a

numer ictype object with a value of true for the Signed property and a fraction length
of 14:

T = numerictype(°"Signed”, true, "FractionLength®, 14)
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DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 14

Now, create the following Fi object in which you specify the numerictype property after
the Signhed property, so that the resulting Fi object is signed:

a = fi(pi,"Signed”,false, "numerictype”,T)
a =
1.9999

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 14

Contrast the Fi object in this code sample with the Fi object in the following code
sample. The numer ictype property in the following code sample is specified before the
Signed property, so the resulting i object is unsigned:

b = fi(pi, "numerictype”,T, "Signed”,false)
b =
3.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16
FractionLength: 14
Copying a fi Object
To copy a Fi object, simply use assignment:
a = fi(pi)

a =
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3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

Creating fi Objects For Use in a Types Table

You can write a reusable MATLAB algorithm by keeping the data types of the
algorithmic variables in a separate types table. For example,

function T = mytypes(dt)

switch dt
case “double”
T.b = double([1):
T.x = double([1):
T.y = double([1):
case "fTixedl6"
T.b = fi([],1,16,15);
T.x = fi([],1,16,15);
T.y = fi([1.1,16,14);
end
end

Cast the variables in the algorithm to the data types in the types table as described in
“Manual Fixed-Point Conversion Best Practices” on page 12-4.

function [y,z]=myfilter(b,x,z,T)
y = zeros(size(x), " like",T.y);
for n=1:length(x)
z(32) [x(n); z(1:end-1)];
y(n) = b * z;

2-10
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end

end

In a separate test file, set up input data to feed into your algorithm, and specify the data
types of the inputs.

%

T=
b=
X=
z=zeros(size(b"), " like",T.-xX);

%

Test inputs

= firl(11,0.25);

= linspace(0,10*pi,256)";
= sin((pi/16)*t."2);
Linear chirp

Cast inputs

mytypes("fixedl6");
cast(b, " like",T.b);
cast(x, "like",T.x);

Run

[y,z] = myfilter(b,x,z,T);

2-11
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Cast fi Objects
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In this section...

“Overwriting by Assignment” on page 2-12
“Ways to Cast with MATLAB Software” on page 2-12

Overwriting by Assignment

Because MATLAB software does not have type declarations, an assignment like A = B
replaces the type and content of A with the type and content of B. If A does not exist at
the time of the assignment, MATLAB creates the variable A and assigns it the same type
and value as B. Such assignment happens with all types in MATLAB—objects and built-
in types alike—including Fi, double, single, int8, uint8, intl6, etc.

For example, the following code overwrites the value and int8 type of A with the value
and intl6 type of B:

A
B
A

int8(0);
int16(32767);
B

A

32767
class(A)
ans =

intl6

Ways to Cast with MATLAB Software

You may find it useful to cast data into another type—for example, when you are casting
data from an accumulator to memory. There are several ways to cast data in MATLAB.
The following sections provide examples of three different methods:

+ Casting by Subscripted Assignment

* Casting by Conversion Function
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* Casting with the Fixed-Point Designer reinterpretcast Function
*  Casting with the cast Function

Casting by Subscripted Assignment

The following subscripted assignment statement retains the type of A and saturates the
value of B to an Int8:

A = int8(0);
B = Intl6(32767);
A(:) =B
A =
127
class(A)
ans =
int8

The same is true for Fi objects:

Ffipref("NumericTypeDisplay®, “"short®);
A = fi(0, 1, 8, 0);

B = fi(32767, 1, 16, 0);
A(:) =B
A =
127
s8,0

Note For more information on subscripted assignments, see the subsasgn function.

Casting by Conversion Function

You can convert from one data type to another by using a conversion function. In this
example, A does not have to be predefined because it is overwritten.

B = intl16(32767);

2-13
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>
1l

ints(B)

127
class(A)
ans =
int8

The same is true for i objects:

B = fi(32767, 1, 16, 0)
A = fi(B, 1, 8, 0)
B =
32767
s16,0
A =
127
s8,0

Using a numerictype Object in the fi Conversion Function

Often a specific numerictype is used in many places, and it is convenient to predefine
numer ictype objects for use in the conversion functions. Predefining these objects is a
good practice because it also puts the data type specification in one place.

T8 = numerictype(1,8,0)
T8 =
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8

FractionLength: 0O

T16 = numerictype(1,16,0)

2-14
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T16 =
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 0O
B = fi(32767,T16)
B =
32767
s16,0
A = fi(B, T8)
A =
127
s8,0

Casting with the reinterpretcast Function

You can convert fixed-point and built-in data types without changing the underlying
data. The Fixed-Point Designer reinterpretcast function performs this type of
conversion.

In the following example, B is an unsigned Fi object with a word length of 8 bits and a
fraction length of 5 bits. The reinterpretcast function converts B into a signed Fi
object A with a word length of 8 bits and a fraction length of 1 bit. The real-world values
of A and B differ, but their binary representations are the same.

B = Ffi([pi/Z4 1 pi/2 4], 0, 8, 5)
T = numerictype(1, 8, 1);

A = reinterpretcast(B, T)

B =

0.7813 1.0000 1.5625 4.0000
DataTypeMode: Fixed-point: binary point scaling

Signedness: Unsigned
WordLength: 8
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FractionLength: 5
A =
12.5000 16.0000 25.0000 -64.0000
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 8
FractionLength: 1

To verify that the underlying data has not changed, compare the binary representations
of A and B:

binary_B = bin(B)
binary_A = bin(A)
binary_A =

00011001 00100000 00110010 10000000

binary_B
00011001 00100000 00110010 10000000
Casting with the cast Function

Using the cast function, you can convert the value of a variable to the same
numer ictype, complexity, and Fimath as another variable.

In the following example, a is cast to the data type of b. The output, ¢, has the same
numerictype and Fimath properties as b, and the value of a.

a pi;
b fi([].1,16,13, "RoundingMethod” ,Floor);
c= cast(a, "like",b)

Cc =
3.1415
DataTypeMode: Fixed-point: binary point scaling

Signedness: Signed
WordLength: 16
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FractionLength:

RoundingMethod:
OverflowAction:
ProductMode:
SumMode:

13

Floor
Saturate
FullPrecision
FullPrecision

Using this syntax allows you to specify data types separately from your algorithmic code

as described in “Manual Fixed-Point Conversion Best Practices” on page 12-4.
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fi Object Properties
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In this section...

“Data Properties” on page 2-18

“fimath Properties” on page 2-18

“numerictype Properties” on page 2-20

“Setting fi Object Properties” on page 2-21

Data Properties

The data properties of a Fi object are always writable.

bin — Stored integer value of a i object in binary

data — Numerical real-world value of a i object

dec — Stored integer value of a Fi object in decimal

double — Real-world value of a Fi object, stored as a MATLAB double data type
hex — Stored integer value of a Fi object in hexadecimal

int — Stored integer value of a Fi object, stored in a built-in MATLAB integer data
type

oct — Stored integer value of a i object in octal

To learn more about these properties, see “fi Object Properties” in the Fixed-Point
Designer Reference.

fimath Properties

In general, the Fimath properties associated with i objects depend on how you create
the Fi object:

When you specify one or more Fimath object properties in the Fi constructor, the
resulting Fi object has a local Fimath object.

When you do not specify any Fimath object properties in the Fi constructor, the
resulting Fi object has no local Fimath.

To determine whether a Fi object has a local Fimath object, use the isFimathlocal
function.
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The Fimath properties associated with i objects determine how fixed-point arithmetic
is performed. These Fimath properties can come from a local fFimath object or from
default Fimath property values. To learn more about Fimath objects in fixed-point
arithmetic, see “fimath Rules for Fixed-Point Arithmetic” on page 4-13.

The following fimath properties are, by transitivity, also properties of the Fi object. You
can set these properties for individual Fi objects. The following Fimath properties are
always writable.

+ CastBeforeSum — Whether both operands are cast to the sum data type before
addition

Note: This property is hidden when the SumMode is set to Ful IPrecision.

+ MaxProductWordLength — Maximum allowable word length for the product data
type

* MaxSumWordLength — Maximum allowable word length for the sum data type

* OverflowAction — Action to take on overflow

* ProductBias — Bias of the product data type

*  ProductFixedExponent — Fixed exponent of the product data type

* ProductFractionLength — Fraction length, in bits, of the product data type

* ProductMode — Defines how the product data type is determined

* ProductSlope — Slope of the product data type

* ProductSlopeAdjustmentFactor — Slope adjustment factor of the product data
type

* ProductWordLength — Word length, in bits, of the product data type

*  RoundingMethod — Rounding method

+ SumBias — Bias of the sum data type

+  SumFixedExponent — Fixed exponent of the sum data type

* SumFractionlLength — Fraction length, in bits, of the sum data type

* SumMode — Defines how the sum data type is determined

+ SumSlope — Slope of the sum data type

+  SumSlopeAdjustmentFactor — Slope adjustment factor of the sum data type

+ SumWordLength — The word length, in bits, of the sum data type

2-19
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For more information, see “fimath Object Properties” on page 4-5.

numerictype Properties

When you create a Fi object, a numerictype object is also automatically created as a
property of the Fi object:

numerictype — Object containing all the data type information of a Fi object, Simulink
signal, or model parameter

The following numerictype properties are, by transitivity, also properties of a Fi object.
The following properties of the numerictype object become read only after you create
the Fi object. However, you can create a copy of a i object with new values specified for
the numerictype properties:

Bias — Bias of a fi object

DataType — Data type category associated with a Fi object

DataTypeMode — Data type and scaling mode of a i object

FixedExponent — Fixed-point exponent associated with a i object
FractionLength — Fraction length of the stored integer value of a Fi object in bits
Scal ing — Fixed-point scaling mode of a i object

Signed — Whether a Fi object is signed or unsigned

Signedness — Whether a Fi object is signed or unsigned

Note: numerictype objects can have a Signedness of Auto, but all i objects must
be Signed or Unsigned. If a numerictype object with Auto Signedness is used to
create a Fi object, the Signedness property of the i object automatically defaults to
Signed.

Slope — Slope associated with a i object
SlopeAdjustmentFactor — Slope adjustment associated with a Fi object
WordLength — Word length of the stored integer value of a i object in bits

For more information, see “numerictype Object Properties” on page 6-6.

There are two ways to specify properties for Fi objects in Fixed-Point Designer software.
Refer to the following sections:
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+ “Setting Fixed-Point Properties at Object Creation” on page 2-21
+ “Using Direct Property Referencing with fi” on page 2-22

Setting fi Object Properties
You can set Fi object properties in two ways:

+ Setting the properties when you create the object

+ Using direct property referencing
Setting Fixed-Point Properties at Object Creation

You can set properties of Fi objects at the time of object creation by including properties
after the arguments of the Fi constructor function. For example, to set the overflow
action to Wrap and the rounding method to Convergent,

Ffi(pi, “OverflowAction®, “Wrap~®, ...
"RoundingMethod®, "Convergent®)

a

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

RoundingMethod: Convergent
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision

To set the stored integer value of a Fi object, use the parameter/value pair for the "int"
property when you create the object. For example, create a signed Fi object with a stored
integer value of 4, 16-bit word length, and 15-bit fraction length.

x = fi(0,1,16,15,"int",4);
Verify that the Fi object has the expected integer setting.

X.int
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ans =
4
Using Direct Property Referencing with fi

You can reference directly into a property for setting or retrieving Fi object property
values using MATLAB structure-like referencing. You do so by using a period to index
into a property by name.

For example, to get the WordLength of a,
a.-WordLength
ans =

16

To set the OverflowAction of a,
a.OverflowAction = “Wrap*®
a =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

RoundingMethod: Convergent
OverflowAction: wrap
ProductMode: FullPrecision
SumMode: FullPrecision

If you have a Fi object b with a local Fimath object, you can remove the local Fimath
object and force b to use default fimath values:

b = fi(pi, 1, "RoundingMethod®, "Floor™)

b
3.1415
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DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

RoundingMethod: Floor
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision

b.fimath = []

b =
3.1415
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13
isfimathlocal (b)
ans =

0
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fi Object Functions

In addition to functions that operate on Fi objects, you can use the following functions to
access data in a Fi object using dot notation.

* bin

+ data

+ dec

+ double
* hex

+ storedlnteger
+ storedIntegerToDouble
+ oct

For example,

fi(pi);
storedInteger(a)

25736

>0
1

hex(a)

6488
a.hex
ans =

6488

2-24



Fixed-Point Topics

+ “Set Up Fixed-Point Objects” on page 3-2

+ “View Fixed-Point Number Circles” on page 3-16

* “Perform Binary-Point Scaling” on page 3-29

+ “Develop Fixed-Point Algorithms” on page 3-34

+ “Calculate Fixed-Point Sine and Cosine” on page 3-46

+ “Calculate Fixed-Point Arctangent” on page 3-69

+ “Compute Sine and Cosine Using CORDIC Rotation Kernel” on page 3-94
+ “Perform QR Factorization Using CORDIC” on page 3-99

+ “Compute Square Root Using CORDIC” on page 3-134

+ “Convert Cartesian to Polar Using CORDIC Vectoring Kernel” on page 3-144
+ “Set Data Types Using Min/Max Instrumentation” on page 3-149

+ “Convert Fast Fourier Transform (FFT) to Fixed Point” on page 3-163

+ “Detect Limit Cycles in Fixed-Point State-Space Systems” on page 3-183
+ “Compute Quantization Error” on page 3-195

+ “Normalize Data for Lookup Tables” on page 3-204

* “Implement Fixed-Point Log2 Using Lookup Table” on page 3-210

+ “Implement Fixed-Point Square Root Using Lookup Table” on page 3-215
+ “Set Fixed-Point Math Attributes” on page 3-220
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Set Up Fixed-Point Objects

Create Fixed-Point Data
This example shows the basics of how to use the fixed-point numeric object Fi.
Notation

The fixed-point numeric object is called Fi because J.H. Wilkinson used fi to denote

fixed-point computations in his classic texts Rounding Errors in Algebraic Processes
(1963), and The Algebraic Eigenvalue Problem (1965).

Setup

This example may use display settings or preferences that are different from what you
are currently using. To ensure that your current display settings and preferences are not
changed by running this example, the example automatically saves and restores them.
The following code captures the current states for any display settings or properties that
the example changes.

originalFormat = get(0, "“format®);

format loose

format long g

% Capture the current state of and reset the fi display and logging
% preferences to the factory settings.

FiprefAtStartOfThisExample = get(fipref);

reset(fipref);

Default Fixed-Point Attributes

To assign a fixed-point data type to a number or variable with the default fixed-point
parameters, use the i constructor. The resulting fixed-point value is called a Fi object.

For example, the following creates Fi objects a and b with attributes shown in the
display, all of which we can specify when the variables are constructed. Note that when
the FractionLength property is not specified, it is set automatically to "best precision"
for the given word length, keeping the most-significant bits of the value. When the
WordLength property is not specified it defaults to 16 bits.

fi(pi)

a
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3.1416015625

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

b = fi(0.1)

0.0999984741210938

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 18

Specifying Signed and WordLength Properties

The second and third numeric arguments specify Signed (true or 1 = signed, false or
0 = unsigned), and WordLength in bits, respectively.

% Signed 8-bit
a = fi(pi, 1, 8)

3.15625
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 5
The sTi constructor may also be used to construct a signed Fi object

al = sfi(pi,8)

al =

3.15625
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DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 5

% Unsigned 20-bit
b = fi(exp(1), 0, 20)

2.71828079223633

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 20
FractionLength: 18

The ufi constructor may be used to construct an unsigned fi object

bl = ufi(exp(1), 20)
bl =
2.71828079223633
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 20
FractionLength: 18
Precision

The data is stored internally with as much precision as is specified. However, it is
important to be aware that initializing high precision fixed-point variables with double-
precision floating-point variables may not give you the resolution that you might expect
at first glance. For example, let's initialize an unsigned 100-bit fixed-point variable with
0.1, and then examine its binary expansion:

a = ufi(0.1, 100);
bin(a)
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ans =

11001100110011001100110011001100110011001100110011010000000000000000000000000000000000(

Note that the infinite repeating binary expansion of 0.1 gets cut off at the 52nd bit (in
fact, the 53rd bit is significant and it is rounded up into the 52nd bit). This is because
double-precision floating-point variables (the default MATLAB® data type), are stored in
64-bit floating-point format, with 1 bit for the sign, 11 bits for the exponent, and 52 bits
for the mantissa plus one "hidden" bit for an effective 53 bits of precision. Even though
double-precision floating-point has a very large range, its precision is limited to 53 bits.
For more information on floating-point arithmetic, refer to Chapter 1 of Cleve Moler's
book, Numerical Computing with MATLAB. The pdf version can be found here: http://
www.mathworks.com/company/aboutus/founders/clevemoler.html

So, why have more precision than floating-point? Because most fixed-point processors
have data stored in a smaller precision, and then compute with larger precisions. For
example, let's initialize a 40-bit unsigned Fi and multiply using full-precision for
products.

Note that the full-precision product of 40-bit operands is 80 bits, which is greater
precision than standard double-precision floating-point.

a = fi(0.1, 0, 40);
bin(a)

ans =

1100110011001100110011001100110011001101

b = a*a

0.0100000000000045

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 80
FractionLength: 86

bin(b)
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ans =

10100011110101110000101000111101011100001111010111000010100011110101110000101001

Access to Data

The data can be accessed in a number of ways which map to built-in data types and
binary strings. For example,

DOUBLE(A)
a = fi(pi);
double(a)
ans =

3.1416015625

returns the double-precision floating-point "real-world" value of a, quantized to the
precision of a.

A.DOUBLE = ...

We can also set the real-world value in a double.

a.double = exp(l)

2.71826171875

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

sets the real-world value of a to e, quantized to a's numeric type.

STOREDINTEGER(A)

storedInteger(a)
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ans =
intl6

22268

returns the "stored integer" in the smallest built-in integer type available, up to 64 bits.
Relationship Between Stored Integer Value and Real-World Value

In BinaryPoint scaling, the relationship between the stored integer value and the real-
world value is

Real-world value = (Stored integer) - 2-Fraction length

There is also SlopeBias scaling, which has the relationship
Real-world value = (Stored integer) - Slope + Bias
where

Slope = (Slope adjustment factor) - gliixed exponent

and

Fixed exponent = —Fraction length.

The math operators of Fi work with BinaryPoint scaling and real-valued SlopeBias
scaled Fi objects.

BIN(A), OCT(A), DEC(A), HEX(A)

return the stored integer in binary, octal, unsigned decimal, and hexadecimal strings,
respectively.

bin(a)

ans =

0101011011111100
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oct(a)

ans =

053374

dec(a)

ans =

22268

hex(a)

ans =

56fc

ABIN=.., AOCT=.. ADEC=..., AHEX =...

set the stored integer from binary, octal, unsigned decimal, and hexadecimal strings,
respectively.

fi(w)

a.bin = "0110010010001000"

3.1416015625

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

fi(d)



Set Up Fixed-Point Objects

a.oct = "031707"

1.6180419921875

DataTypeMode:
Signedness:
WordLength:

FractionLength:

fi(e)

a.dec = "22268"

Fixed-point:

Signed
16
13

2.71826171875

DataTypeMode:
Signedness:
WordLength:

FractionLength:

£i(0.1)

a.hex = "0333"

Fixed-point:

Signed
16
13

0.0999755859375

DataTypeMode:
Signedness:
WordLength:

FractionLength:

Specifying FractionLength

Fixed-point:

Signed
16
13

binary point scaling

binary point scaling

binary point scaling

When the FractionLength property is not specified, it is computed to be the best
precision for the magnitude of the value and given word length. You may also specify the
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fraction length directly as the fourth numeric argument in the i constructor or the third
numeric argument in the sFi or ufi constructor. In the following, compare the fraction
length of a, which was explicitly set to 0, to the fraction length of b, which was set to best
precision for the magnitude of the value.

a = sfi(10,16,0)
a =
10
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: O
b = sfi(10,16)
b =
10

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 11

Note that the stored integer values of a and b are different, even though their real-
world values are the same. This is because the real-world value of a is the stored integer
scaled by 270 = 1, while the real-world value of b is the stored integer scaled by 2*-11 =
0.00048828125.

storedInteger(a)

ans =
intl6

10

storedInteger(b)
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ans =
intl6

20480

Specifying Properties with Parameter/Value Pairs

Thus far, we have been specifying the numeric type properties by passing numeric
arguments to the Fi constructor. We can also specify properties by giving the name of the
property as a string followed by the value of the property:

a = Fi(pi,"WordLength®,20)

3.14159393310547

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 20
FractionLength: 17

For more information on Fi properties, type

help Ti
or
doc fi

at the MATLAB command line.
Numeric Type Properties

All of the numeric type properties of Fi are encapsulated in an object named
numerictype:

T numerictype
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DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

The numeric type properties can be modified either when the object is created by passing
in parameter/value arguments

T

numerictype(“WordLength®,40, "FractionLength®,37)

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 40
FractionLength: 37

or they may be assigned by using the dot notation

T.Signed = false

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 40
FractionLength: 37

All of the numeric type properties of a i may be set at once by passing in the
numerictype object. This is handy, for example, when creating more than one fi object
that share the same numeric type.

a = fi(pi, "numerictype”,T)

3.14159265359194
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DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 40
FractionLength: 37

o
1

Fi(exp(l), "numerictype”,T)

2.71828182845638

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 40
FractionLength: 37

The numerictype object may also be passed directly to the Fi constructor

al fi(pi,T)

al

3.14159265359194
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 40
FractionLength: 37
For more information on numerictype properties, type
help numerictype
or
doc numerictype
at the MATLAB command line.

Display Preferences

The display preferences for i can be set with the Fipref object. They can be saved
between MATLAB sessions with the savefipref command.
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Display of Real-World Values

When displaying real-world values, the closest double-precision floating-point value is
displayed. As we have seen, double-precision floating-point may not always be able to
represent the exact value of high-precision fixed-point number. For example, an 8-bit

fractional number can be represented exactly in doubles

a = sfi(1,8,7)
a =
0.9921875
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 7
bin(a)
ans =
01111111

while a 100-bit fractional number cannot (1 is displayed, when the exact value is 1 -
2/-99):

b

sfi(1,100,99)

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 100
FractionLength: 99

Note, however, that the full precision is preserved in the internal representation of i

bin(b)
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ans =

011111121111212211211221212112111211211312112121712112211712171211221221121131211712112111121121111

The display of the Fi object is also affected by MATLAB's format command. In
particular, when displaying real-world values, it is handy to use

format long g
so that as much precision as is possible will be displayed.

There are also other display options to make a more shorthand display of the numeric
type properties, and options to control the display of the value (as real-world value,
binary, octal, decimal integer, or hex).

For more information on display preferences, type
help fipref

help savefipref
help format

or

doc fipref
doc savefipref
doc format

at the MATLAB command line.
Cleanup

The following code sets any display settings or preferences that the example changed
back to their original states.

% Reset the fi display and logging preferences
Ffipref(FiprefAtStartOfThisExample);
set(0, “format®, originalFormat);
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View Fixed-Point Number Circles

This example shows how to define unsigned and signed two's complement integer and
fixed-point numbers.

Fixed-Point Number Definitions

This example illustrates the definitions of unsigned and signed-two's-complement integer
and fixed-point numbers.

Unsigned Integers.

Unsigned integers are represented in the binary number system in the following way. Let
b = [b(n) b(n-1) ... b(2) b(1)]

be the binary digits of an n-bit unsigned integer, where each b(i) is either one or zero.
Then the value of b is

u = b(n)*27(n-1) + b(n-1)*2~(n-2) + ... + b(2)*2~(1) + b(1)*27(0)

For example, let's define a 3-bit unsigned integer quantizer, and enumerate its range.
originalFormat = get(0, "format®); format

g = quantizer(“ufixed”,[3 0]);

[a,b] = range(q);

u = (a:eps(@):b)-

% Now, let"s display those values in binary.
b = num2bin(q,u)

~N~No b~ wNPEFE O
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000
001
010
011
100
101
110
111

Unsigned Integer Number Circle.

Let's array them around a clock face with their corresponding binary and decimal values.

fidemo.numbercircle(q);
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o
P
P
Il

(==

M =7 001 =1
Mo =6 010 = 2
M1 =5 011 =3
00 = 4

Unsigned Fixed-Point.

Unsigned fixed-point values are unsigned integers that are scaled by a power of two. We
call the negative exponent of the power of two the "fractionlength".

If the unsigned integer u is defined as before, and the fractionlength is f, then the value
of the unsigned fixed-point number is

uf = u*2n-f

For example, let's define a 3-bit unsigned fixed-point quantizer with a fractionlength of 1,
and enumerate its range.

q = quantizer(“ufixed”,[3 1]);
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[a.b] = range(q);
uf = (a:eps(@):b)"

% Now, let"s display those values iIn binary.
b = num2bin(q,uf)

uf =
0
0.5000
1.0000
1.5000
2.0000
2.5000
3.0000
3.5000
b:
000
001
010
011
100
101
110
111

Unsigned Fixed-Point Number Circle.
Let's array them around a clock face with their corresponding binary and decimal values.

fidemo.numbercircle(q);
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1M11=72"=35 0m1=12"'=05
1M10=62"= 3 Mo=22"= 1
MW1=52"=25 011=32"=15

0W0=42"= 2

Unsigned Fractional Fixed-Point.

Unsigned fractional fixed-point numbers are fixed-point numbers whos fractionlength f
is equal to the wordlength n, which produces a scaling such that the range of numbers
is between 0 and 1-2”-f, inclusive. This is the most common form of fixed-point numbers
because it has the nice property that all of the numbers are less than one, and the
product of two numbers less than one is a number less than one, and so multiplication
does not overflow.

Thus, the definition of unsigned fractional fixed-point is the same as unsigned fixed-
point, with the restriction that f=n, where n is the wordlength in bits.

uf = u*2n-f
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For example, let's define a 3-bit unsigned fractional fixed-point quantizer, which implies

a fractionlength of 3.

q = quantizer(“ufixed”,[3 3]);
[a.b] = range(q);
uf = (a:eps(@):b)"

% Now,

uf =

000
001
010
011
100
101
110
111

Unsigned Fractional Fixed-Point Number Circle.

eNeoNoNoNeoNoNe]

let"s display those values in binary.
b = num2bin(q,uf)

-1250
-2500
-3750
-5000
-6250
-7500
-8750

Let's array them around a clock face with their corresponding binary and decimal values.

fidemo.numbercircle(q);
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3

000=02%= 0
111 =7 2%=0875 001 =12%=0125
-3 _ -3 _
110=6 2= 075 00=22%= 025
101 =5 23 =0625 011 =3 2%=0.375

100=4.2%= 05

Signed Two's-Complement Integers.

Signed integers are represented in two's-complement in the binary number system in the
following way. Let

b = [b(n) b(n-1) ... b(2) b(1)]

be the binary digits of an n-bit signed integer, where each b(i) is either one or zero. Then
the value of b is

s = -b(n)*27(n-1) + b(n-1)*2~(n-2) + ... + b(2)*2~(1) + b(1)*2~(0)

Note that the difference between this and the unsigned number is the negative weight on
the most-significant-bit (MSB).
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For example, let's define a 3-bit signed integer quantizer, and enumerate its range.

q = quantizer("fixed",[3 0]);
[a.b] = range(q):
s = (a:eps(qQ):b)*

% Now, let"s display those values in binary.
b = num2bin(q,s)

% Note that the most-significant-bit of negative numbers is 1, and positive
% numbers is O.

s =

-4

-3

-2

-1

0

1

2

3
b =
100
101
110
111
000
001
010
011

Signed Two's-Complement Integer Number Circle.
Let's array them around a clock face with their corresponding binary and decimal values.
The reason for this ungainly looking definition of negative numbers is that addition of all

numbers, both positive and negative, is carried out as if they were all positive, and then
the n+1 carry bit is discarded. The result will be correct if there is no overflow.
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fidemo.numbercircle(q);

o
o]
5
Il

==

111 = 1 001 = 1
110 = -2 0o = 2
1M = -3 011 =3
00 = -4

Signed Fixed-Point.

Signed fixed-point values are signed integers that are scaled by a power of two. We call
the negative exponent of the power of two the "fractionlength".

If the signed integer s is defined as before, and the fractionlength is f, then the value of
the signed fixed-point number is

st = s*2~-f

For example, let's define a 3-bit signed fixed-point quantizer with a fractionlength of 1,
and enumerate its range.
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q = quantizer("fixed",[3 1]);
[a.b] = range(q);
st = (azeps(q):b)*

% Now,

st =

b =

100
101
110
111
000
001
010
011

Signed Fixed-Point Number Circle.

2.
1.
1.
-0.

0.
1.
1.

let"s display those values in binary.
b = num2bin(q,sf)

0000
5000
0000
5000

5000
0000
5000

Let's array them around a clock face with their corresponding binary and decimal values.

fidemo.numbercircle(q);
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1

0wo=102"= 0
M1=-1.2"=205 001=1.2"=05
1M0=-22"= 4 0M10=2 2= 1
MW1=32"'=15 01.1=3.2'=15

10W0=4.21= 2

Signed Fractional Fixed-Point.

Signed fractional fixed-point numbers are fixed-point numbers whos fractionlength f is
one less than the wordlength n, which produces a scaling such that the range of numbers
is between -1 and 1-27-f, inclusive. This is the most common form of fixed-point numbers
because it has the nice property that the product of two numbers less than one is a
number less than one, and so multiplication does not overflow. The only exception is

the case when we are multiplying -1 by -1, because +1 is not an element of this number
system. Some processors have a special multiplication instruction for this situation, and
some add an extra bit in the product to guard against this overflow.

Thus, the definition of signed fractional fixed-point is the same as signed fixed-point,
with the restriction that f=n-1, where n is the wordlength in bits.
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st = s*2~-f

For example, let's define a 3-bit signed fractional fixed-point quantizer, which implies a

fractionlength of 2.

q = quantizer("fixed",[3 2]);
[a.b] = range(q);
st = (a:eps(q):b)*

% Now,

st =

b =

100
101
110
111
000
001
010
011

Signed Fractional Fixed-Point Number Circle.

1.
0.
0.
0.

0.
0.
0.

let"s display those values in binary.
b = num2bin(q,sf)

0000
7500
5000
2500

2500
5000
7500

Let's array them around a clock face with their corresponding binary and decimal values.

fidemo.numbercircle(Qq);

set(0, "format", originalFormat);
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0.00 = 0

111=-1.22=1025

110=2.22= .05

101=-3.22=075

1.00 = 4-
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Perform Binary-Point Scaling

This example shows how to perform binary point scaling in FI.
FI Construction

a = fi(v,s,w, ) returns a Fi with value v, signedness s, word length w, and fraction
length T.

If s is true (signed) the leading or most significant bit (MSB) in the resulting fi is always
the sign bit.

Fraction length f is the scaling 2~ (-F).

For example, create a signed 8-bit long Fi with a value of 0.5 and a scaling of 2/(-7):

a = fi(0.5,true,8,7)

0.5000
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 7
Fraction Length and the Position of the Binary Point

The fraction length or the scaling determines the position of the binary point in the Fi
object.

The Fraction Length is Positive and Less than the Word Length

When the fraction length F is positive and less than the word length, the binary point lies
T places to the left of the least significant bit (LSB) and within the word.

For example, in a signed 3-bit i with fraction length of 1 and value -0.5, the binary
point lies 1 place to the left of the LSB. In this case each bit is set to 1 and the binary
equivalent of the i with its binary pointis 11.1 .

The real world value of -0.5 is obtained by multiplying each bit by its scaling factor,
starting with the LSB and working up to the signed MSB.
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(1*27-1) + (1*270) +(-1*271) = -0.5
storedInteger(a) returns the stored signed, unscaled integer value -1.
(1*270) + (1*2n1) +(-1*272) = -1

a = fi(-0.5,true,3,1)

bin(a)
storedInteger(a)
a =
-0.5000
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 3
FractionLength: 1
ans =
111
ans =
int8
-1

The Fraction Length is Positive and Greater than the Word Length

When the fraction length F is positive and greater than the word length, the binary point
lies T places to the left of the LLSB and outside the word.

For example the binary equivalent of a signed 3-bit word with fraction length of 4 and
value of -0.06251s ._111 Here _inthe ._111 denotes an unused bit that is not a part of
the 3-bit word. The first 1 after the _is the MSB or the sign bit.

The real world value of -0.0625 is computed as follows (LLSB to MSB).

(1*27-4) + (1*27-3) + (-1*2"-2) = -0.0625
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bin(b) will return 111 at the MATLAB® prompt and storedInteger(b) = -1

b = fi(-0.0625, true,3,4)

bin(b)
storedInteger(b)
b =
-0.0625
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 3
FractionLength: 4
ans =
111
ans =
intd
-1

The Fraction Length is a Negative Integer and Less than the Word Length

When the fraction length F is negative the binary point lies F places to the right of LSB
and is outside the physical word.

For instance in ¢ = Fi(-4,true, 3,-2) the binary point lies 2 places to the right of the
LSB 111 .. Here the two right most spaces are unused bits that are not part of the 3-
bit word. The right most 1 is the LSB and the leading 1 is the sign bit.

The real world value of -4 is obtained by multiplying each bit by its scaling factor 2~ (-
),1.e. 2(-(-2)) = 2~(2) for the LSB, and then adding the products together.

a*2n2) + (1*273) +(-1*2™M) = -4

bin(c) and storedInteger(c) will still give 111 and -1 as in the previous two
examples.
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c = fi(-4,true,3,-2)

bin(c)
storedInteger(c)
CcC =
-4
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 3
FractionLength: -2
ans =
111
ans =
int8
-1

The Fraction Length is Set Automatically to the Best Precision Possible and is Negative

In this example we create a signed 3-bit Fi where the fraction length is set automatically
depending on the value that the Fi is supposed to contain. The resulting i has a value
of 6, with a wordlength of 3 bits and a fraction length of -1. Here the binary point is 1
place to the right of the LSB: 011 .. The _is again an unused bit and the first 1 before
the _is the LSB. The leading 1 is the sign bit.

The real world value (6) is obtained as follows:

ax2n) + (1*272) + (-0*2"3) = 6

bin(d) and storedInteger(d) will give 011 and 3 respectively.
d = fi(5,true,3)

bin(d)
storedInteger(d)
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d =
6
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 3
FractionLength: -1
ans =
011
ans =
int8

Interactive Fl Binary Point Scaling Example

This is an interactive example that allows the user to change the fraction length of a 3-
bit fixed-point number by moving the binary point using a slider. The fraction length can
be varied from -3 to 5 and the user can change the value of the 3 bits to '0' or '1' for either
signed or unsigned numbers.

The "Scaling factors" above the 3 bits display the scaling or weight that each bit is given
for the specified signedness and fraction length. The Fi code, the double precision real-
world value and the fixed-point attributes are also displayed.

Type fibinscaling at the MATLAB prompt to run this example.
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3-34

This example shows how to develop and verify a simple fixed-point algorithm.

Simple Example of Algorithm Development

This example shows the development and verification of a simple fixed-point filter
algorithm. We will follow the following steps:

1) Implement a second order filter algorithm and simulate in double-precision floating-
point.

2) Instrument the code to visualize the dynamic range of the output and state.

3) Convert the algorithm to fixed-point by changing the data type of the variables - the
algorithm itself does not change.

4) Compare and plot the fixed-point and floating-point results.
Floating-Point Variable Definitions

We develop our algorithm in double-precision floating-point. We will use a second-order
lowpass filter to remove the high frequencies in the input signal.

b [ 0.25 0.5 0.25 1:; % Numerator coefficients

a [ 1 0.09375 0.28125 ]; % Denominator coefficients
% Random input that has both high and low frequencies.

s = rng; rng(0, "v5uniform®);

X = randn(1000,1);

rng(s); % restore RNG state

% Pre-allocate the output and state for speed.

y = zeros(size(X)):

z = [0;0];

Data-Type-Independent Algorithm
This is a second-order filter that implements the standard difference equation:

y(n) = b(1)*x(n) + b(2)*x(n-1) + b(3)*x(n-2) - a(2)*y(n-1) - a3)*y(n-2)

for k=1:length(x)
y(k) = b(@)*x(k) + z(1);
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z(1)
z(2)

end

by*x(k) + z(2)) - a(2)*y(K);
b(3)*x(K) - a3®*y(k);

% Save the Floating-Point Result
ydouble = y;

Visualize Dynamic Range

In order to convert to fixed-point, we need to know the range of the variables. Depending
on the complexity of an algorithm, this task can be simple or quite challenging. In this
example, the range of the input value is known, so selecting an appropriate fixed-point
data type is simple. We will concentrate on the output (y) and states (z) since their range
is unknown. To view the dynamic range of the output and states, we will modify the code
slightly to instrument it. We will create two NumericTypeScope objects and view the
dynamic range of the output (y) and states (z) simultaneously.

Instrument Floating-Point Code

% Reset states
z = [0;0];

hscopel = NumericTypeScope;
hscope2 = NumericTypeScope;
for k=1:length(x)

y(k) = b(1)*x(k) + z(1);

z(1) = (b(2)*x(k) + z(2)) - a(2)*y(K);
z(2) = bE)*x(k) - a®)*y(k);
% process the data and update the visual.
step(hscopel,z);

end

step(hscope2,y);
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Analyze Information in the Scope

Let us first analyze the information displayed for variable z (state). From the histogram
we can see that the dynamic range lies between (2' 2 13

By default, the scope uses a word length of 16 bits with zero tolerable overflows. This
results in a data type of numerictype(true,16, 14) since we need at least 2 integer bit

to avoid overflows. You can get more information on the statistical data from the Input
Data and Resulting Type panels. From the Input Data panel we can see that the data has
both positive and negative values and hence a signed quantity which is reflected in the
suggested numerictype. Also, the maximum data value is 1.51 which can be represented
by the suggested type.

Next, let us look at variable y (output). From the histogram plot we see that the dynamic
range lies between (2' 271,

By default, the scope uses a word length of 16 bits with zero tolerable overflows. This
results in a data type of numerictype(true,16, 14) since we need at least 2 integer bits to
avoid overflows. With this suggested type you see no overflows or underflows.

Fixed-Point Variable Definitions

We convert variables to fixed-point and run the algorithm again. We will turn on logging
to see the overflows and underflows introduced by the selected data types.

% Turn on logging to see overflows/underflows.

FIPREF_STATE = get(Fipref);

reset(fipref)

fp = Fipref;

default_loggingmode = fp.LoggingMode;

fp.LoggingMode = "On~;

% Capture the present state of and reset the global fimath to the factory
% settings.

globalFimathAtStart = fimath;

resetglobalfimath;

% Define the fixed-point types for the variables in the below format:
% fi(Data, Signed, WordLength, FractionLength)

b= fi(b, 1, 8, 6);

a = fi(a, 1, 8, 6);

x = Fi(x, 1, 16, 13);

y = fi(zeros(size(xX)), 1, 16, 13);
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z = fi([0;0], 1, 16, 14);
Same Data-Type-Independent Algorithm

for k=1:length(x)

y(k) = b(1)*x(k) + z(1);
z(1) = (b2)*x(k) + z(2)) - a()*y(K);
z(2) = bB)*x(k) - a®3®)*y(k);

end
% Reset the logging mode.
fp.LoggingMode = default_loggingmode;

In this example, we have redefined the fixed-point variables with the same names as
the floating-point so that we could inline the algorithm code for clarity. However, it is a
better practice to enclose the algorithm code in a MATLAB® file function that could be
called with either floating-point or fixed-point variables. See Fi limitcycledemo.m for
an example of writing and using a datatype-agnostic algorithm.

Compare and Plot the Floating-Point and Fixed-Point Results

We will now plot the magnitude response of the floating-point and fixed-point results and
the response of the filter to see if the filter behaves as expected when it is converted to
fixed-point.

n = length(x);
f = linspace(0,0.5,n/2);
x_response = 20*logl0(abs(fft(double(x))));
ydouble_response = 20*logl0(abs(fft(ydouble)));
y_response = 20*logl0(abs(fft(double(y))));
plot(f,x_response(1:n/2),"c-", ...
f,ydouble_response(1:n/2),"bo-", ...
f,y_response(1:n/2),"gs-");
ylabel ("*Magnitude in dB");
xlabel ("Normalized Frequency®);
legend("Input”, "Floating point output”,"Fixed point output”,"Location”, "Best");
title("Magnitude response of Floating-point and Fixed-point results®);
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Magnitude response of Floating-point and Fixed-point results
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h = fft(double(b),n)./fft(double(a),n);
= h(1:end/2);
clf
hax = axes;
plot(hax,f,20*1ogl10(abs(h)));
set(hax, "YLim",[-40 0]);
title("Magnitude response of the filter™);
ylabel (*Magnitude in dB%)
xlabel ("Frequency®);
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Magnitude in dB

Magnitude response of the filter
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Notice that the high frequencies in the input signal are attenuated by the low-pass filter
which is the expected behavior.
Plot the Error
clf
n = (0:length(y)-1)";

= double(lIsb(y)):
plot(n,double(y)-ydouble, " y -
[n(1) n(end)],[e’/2 e/2] "c*t
[n(1) n(end)],[-e/2 —e/2] 'c')
text(n(end),e/2,"+1/2 LSB", "HorizontalAlignment®, "right", "VerticalAlignment®, "bottom®)

text(n(end),-e/2,"-1/2 LSB","HorizontalAlignment®, "right","VerticalAlignment®, "top~")
xlabel ("n (samples)®); ylabel(“error”®)
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Simulink®

If you have Simulink® and Fixed-Point Designer™, you can run this model, which is the

equivalent of the algorithm above. The output, y_sim is a fixed-point variable equal to
the variable y calculated above in MATLAB code.

As in the MATLAB code, the fixed-point parameters in the blocks can be modified to
match an actual system; these have been set to match the MATLAB code in the example
above. Double-click on the blocks to see the settings.

if fidemo.hasSimulinkLicense

% Set up the From Workspace variable
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x_sim.time = n;

x_sim.signals.values = x;

x_sim.signals.dimensions = 1;

% Run the simulation

out_sim = sim("fitdf2filter_demo®, "SaveOutput®, "on", ...
"SrcWorkspace®, "current®);

% Open the model
Fitdf2filter_demo

% Verify that the Simulink results are the same as the MATLAB file
isequal(y, out_sim.get("y_sim"))

end

ans =
logical

1
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®_sim

sfix16_En13 sfix24_Enid sfi2h Eni18 =fin16_En13
I 025 Convert y_sim
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>
B(1) sfixl6_Enid
1
z
sfix6_Enid
sfix25_En19
b sfxz4 Enid a(2)
-—h>—>
B(2) sfix16_Eni4

B3
Copyright 2004-2010 The MathWorks, Inc.

Assumptions Made for this Example

In order to simplify the example, we have taken the default math parameters: round-
to-nearest, saturate on overflow, full precision products and sums. We can modify all of
these parameters to match an actual system.

The settings were chosen as a starting point in algorithm development. Save a copy of
this MATLAB file, start playing with the parameters, and see what effects they have
on the output. How does the algorithm behave with a different input? See the help for
fi, fimath, and numerictype for information on how to set other parameters, such as
rounding mode, and overflow mode.

close all force;
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bdclose all;

% Reset the global fimath
globalfimath(globalFimathAtStart);
fipref(FIPREF_STATE);
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This example shows how to use both CORDIC-based and lookup table-based algorithms
provided by the Fixed-Point Designer™ to approximate the MATLAB® sine (SIN) and
cosine (COS) functions. Efficient fixed-point sine and cosine algorithms are critical to
many embedded applications, including motor controls, navigation, signal processing,
and wireless communications.

Calculating Sine and Cosine Using the CORDIC Algorithm
Introduction

The cordiccexp, cordicsincos, cordicsin, and cordiccos functions approximate
the MATLAB sin and cos functions using a CORDIC-based algorithm. CORDIC is an
acronym for COordinate Rotation DIgital Computer. The Givens rotation-based CORDIC
algorithm (see [1,2]) is one of the most hardware efficient algorithms because it only
requires iterative shift-add operations. The CORDIC algorithm eliminates the need for
explicit multipliers, and is suitable for calculating a variety of functions, such as sine,
cosine, arcsine, arccosine, arctangent, vector magnitude, divide, square root, hyperbolic
and logarithmic functions.

You can use the CORDIC rotation computing mode to calculate sine and cosine, and
also polar-to-cartesian conversion operations. In this mode, the vector magnitude and
an angle of rotation are known and the coordinate (X-Y) components are computed after
rotation.

CORDIC Rotation Computation Mode

The CORDIC rotation mode algorithm begins by initializing an angle accumulator with
the desired rotation angle. Next, the rotation decision at each CORDIC iteration is done
in a way that decreases the magnitude of the residual angle accumulator. The rotation
decision is based on the sign of the residual angle in the angle accumulator after each
iteration.

In rotation mode, the CORDIC equations are:

zZig1 = & — d; * atan(27")
Tip] =T —yi*d; =2 !
Wivl = Ui - I * ”rl' "-2 :
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where @i = —1if zi < U and +1 otherwise;
i=0,1,...N — 1 and N is the total number of iterations.
This provides the following result as N approaches +:

zy =1
xy = Axlxgeos zp — ypsinz)

Un Apx(yp cos zg + xgsin zp)

Where:

N=1

Ap H V14 2-2

In rotation mode, the CORDIC algorithm is limited to rotation angles between — ™ /2

and /2. To support angles outside of that range, the cordiccexp, cordicsincos,
cordicsin, and cordiccos functions use quadrant correction (including possible extra
negation) after the CORDIC iterations are completed.

Understanding the CORDICSINCOS Sine and Cosine Code
Introduction

The cordicsincos function calculates the sine and cosine of input angles in the range
[-2*pi 2*pi) using the CORDIC algorithm. This function takes an angle # (radians) and
the number of iterations as input arguments. The function returns approximations of
sine and cosine.

The CORDIC computation outputs are scaled by the rotator gain. This gain is accounted

for by pre-scaling the initial 1/AN constant value.
Initialization
The cordicsincos function performs the following initialization steps:

* The angle input look-up table inpLUT is set to atan(2 .~ -(0:N-1)).
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* 2 is set to the # input argument value.

. i i o
Ty is set to 1/ -1-‘.

+ W is set to zero.

The judicious choice of initial values allows the algorithm to directly compute both sine
and cosine simultaneously. After [V iterations, these initial values lead to the following
outputs as N approaches +oc:

xy = cos(l)

yn = sin(@)

Shared Fixed-Point and Floating-Point CORDIC Kernel Code

The MATLAB code for the CORDIC algorithm (rotation mode) kernel portion is as
follows (for the case of scalar X, y, and z). This same code is used for both fixed-point and
floating-point operations:

function [x, y, z] = cordic_rotation_kernel(x, y, z, inpLUT, n)
% Perform CORDIC rotation kernel algorithm for N kernel iterations.

xtmp = X;
ytmp = y;
for idx = 1:n
ifz<O
z(z) = z + inpLUT(idx);
x() = x + ytmp;
y(:) =y - xtmp;
else
z(z) = z - inpLUT(idXx);
x() = x - ytmp;
y(:) =y + xtmp;
end
xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2"(-idx)
ytmp = bitsra(y, idx); % bit-shift-right for multiply by 27(-idx)
end

Visualizing the Sine-Cosine Rotation Mode CORDIC lterations

The CORDIC algorithm is usually run through a specified (constant) number of
iterations since ending the CORDIC iterations early would break pipelined code, and the

CORDIC gain “» would not be constant because it would vary.
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For very large values of 1, the CORDIC algorithm is guaranteed to converge, but not
always monotonically. As will be shown in the following example, intermediate iterations
occasionally produce more accurate results than later iterations. You can typically
achieve greater accuracy by increasing the total number of iterations.

Example

In the following example, iteration 5 provides a better estimate of the result than
iteration 6, and the CORDIC algorithm converges in later iterations.

theta = pi/5; % input angle in radians
niters = 10; % number of iterations
sinTh = sin(theta); % reference result
cosTh = cos(theta); % reference result
y_sin = zeros(niters, 1);

sin_err = zeros(niters, 1);

X_CO0S = zeros(niters, 1);

cos_err = zeros(niters, 1);

fprintF("\n\nNITERS \tERROR\N");

fprintf("-———--—- \t-—————————- \n");

for n = 1l:niters
[y_sin(n), x_cos(n)] = cordicsincos(theta, n);
sin_err(n) = abs(y_sin(n) - sinTh);
cos_err(n) = abs(x_cos(n) - cosTh);

ifn<10
fprintf(” %d \t %1.8F\n", n, cos_err(n));
else
fprintf (" %d \t %1.8F\n", n, cos_err(n));
end
end
fprintf("\n");

NITERS ERROR

-10191021
-13966630
-03464449
-03846157
-00020393
-01776952
-00888037
-00436052

O~NOOT A WNPRF
cNeoNoNoNoNoNoNe]
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Error
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9 0.00208192
10 0.00093798

Plot the CORDIC approximation error on a bar graph

figure(1l); clf;

bar(1:niters, cos_err(l:niters));

xlabel ("Number of iterations”, "fontsize",12, "fontweight","b");

ylabel ("Error”®,"fontsize",12, " fontweight®,"b");

title("CORDIC approximation error for cos(pi/5) computation®,...
"fontsize",12, "fontweight®,"b");

axis([0 niters 0 0.14]);

CORDIC approximation error for cos(pi/5) computation
D14 T T T T T T T

0.12

0.1

0.08

0.06

0.04

0.02

1 2 3 4 5 G 7 ) 9 10
Number of iterations

Plot the X-Y results for 5 iterations
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Niter2Draw = 5;
figure(2), clf, hold on
plot(cos(0:0.1:pi/2), sin(0:0.1:pi/2), "b--"); % semi-circle
for i=1:Niter2Draw
plot([0 x_cos(i)]1,[0 y_sin(i)], "LineWidth", 2); % CORDIC iteration result
text(x_cos(i),y_sin(i),int2str (i), "fontsize",12, " fontweight™,"b");
end
plot(cos(theta), sin(theta), "r*", "MarkerSize", 20); % IDEAL result
xlabel ("X (C0S) ", "fontsize",12, " fontweight™,"b")
ylabel ("Y (SIN)*","fontsize",12, " fontweight”,"b")
title("CORDIC iterations for cos(pi/5) computation®,...
*fontsize",12, "fontweight™,"b")
axis equal;
axis square;

CORDIC iterations for cos(pi/5) computation
1r . —

D i i i i
0 02 04 0.6 08 1

X (COs)
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Computing Fixed-point Sine with cordicsin

Create 1024 points between [-2¥pi, 2¥pi)

stepSize = pi/256;

thRadDbl = (-2*pi):stepSize:(2*pi - stepSize);

thRadFxp = sfi(thRadDbl, 12); % signed, 12-bit fixed-point values
sinThRef = sin(double(thRadFxp)); % reference results

Compare fixed-point CORDIC vs. double-precision trig function results

Use 12-bit quantized inputs and vary number of iterations from 4 to 10.

for niters = 4:3:10
cdcSinTh = cordicsin(thRadFxp, niters);
errCdcRef = sinThRef - double(cdcSinTh);
figure; hold on; axis([-2*pi 2*pi -1.25 1.25]);
plot(thRadFxp, sinThRef, "b");
plot(thRadFxp, cdcSinTh, "g");
plot(thRadFxp, errCdcRef, "r-);
ylabel("sin(\Theta) ", "fontsize",12, " fontweight","b");
set(gca, "XTick" ,-2*pi:pi/2:2*pi);
set(gca, "XTickLabel ", . ..
{"-2*pi~, "-3*pi/2*, "-pi*, "-pi/2-,
0%, "pi/27, "pi®, "3*pi/27,"2*pi"});
set(gca, "YTick",-1:0.5:1);
set(gca, "YTickLabel " ,{"-1.0","-0.5","0",70.5","1.0"});

ref_str = "Reference: sin(double(\Theta))";
cdc_str = sprintf("12-bit CORDICSIN; N = %d", niters);
err_str = sprintf("Error (max = %f)", max(abs(errCdcRef)));

legend(ref_str, cdc_str, err_str);
title(cdc_str, "fontsize®,12, " fontweight”,"b");
end
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0.5

sin(Q)

12-bit CORDICSIN; N =4

— Reference: sin[double(3))
— 12-bit CORDICSIN; M = 4
Error (max =0.121014)

/o

i 3piz 2

-3'pil2 -pi pil2 0 pil2 pi
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12-bit CORDICSIN; N =7

— Reference: sin(double{ &)

10F J;’”\\ — 12-bit CORDICSIN; N =T
/ Error (max = 0.016234)
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12-bit CORDICSIN; N =10

— Reference: sin(double(&))
or —— 12:bit CORDICSIN; N = 10
' Error (max = 0.005493)

0.5 \

0 = =7
a5

W r "\._‘

A0F o ‘

2% -3'pi2 -pi -pi2 0 pil2 pi 3'pi2 2

Compute the LSB Error for N =10

figure;
fracLen = cdcSinTh.FractionLength;
plot(thRadFxp, abs(errCdcRef) * pow2(fracLen));
set(gca, "XTick",-2*pi:pi/2:2*pi);
set(gca, "XTickLabel ", ...
{"-2*pi~, "-3*pi/2°, "-pi*, "-pi/2-,
“0", "pi/27, TpiT, "3*pi/27,"2*pi });
ylabel (sprintf("LSB Error: 1 LSB = 2~{-%d}",fracLen), "fontsize",12, "fontweight®,"b");
title("LSB Error: 12-bit CORDICSIN; N=10","fontsize",12, "fontweight™,"b");
axis([-2*pi 2*pi 0 6]);
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LSB Error: 12-bit CORDICSIN; N=10
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Compute Noise Floor
fft_mag = abs(fft(double(cdcSinTh)));
max_mag = max(fft_mag);
mag_db = 20*loglO(Fft_mag/max_mag) ;
figure;
hold on;
plot(0:1023, mag_db);
plot(0:1023, zeros(1,1024)," r--"); % Normalized peak (0 dB)

plot(0:1023, -62.*ones(1,1024),"r--"); % Noise floor level

ylabel ("dB Magnitude®, "fontsize",12, "fontweight®,"b");

title("62 dB Noise Floor: 12-bit CORDICSIN; N=10%,...
“fontsize",12, "fontweight®,"b");

% axis([0 1023 -120 0]); full FFT
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dB Magnitude

axis([0 round(1024*(pi/8)) -100 10]); % zoom in
set(gca, "XTick™,[0 round(1024*pi/16) round(1024*pi/8)]);
set(gca, "XTickLabel " ,{"0","pi/16","pi/87});

62 dB Noise Floor: 12-bit CORDICSIN; N=10

Jl !‘ .**A'MIW'W" ! ‘h Jo Wi"*’ ny

0 pifG pil8

Accelerating the Fixed-Point CORD ICSINCOS Function with FIACCEL

You can generate a MEX function from MATLAB code using the MATLAB® fiaccel
function. Typically, running a generated MEX function can improve the simulation
speed, although the actual speed improvement depends on the simulation platform being
used. The following example shows how to accelerate the fixed-point cordicsincos
function using Fiaccel.

The fiaccel function compiles the MATLAB code into a MEX function. This step
requires the creation of a temporary directory and write permissions in this directory.
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tempdirObj = fidemo.FfiTempdir("fi_sin_cos_demo”);

When you declare the number of iterations to be a constant (e.g., 10) using
coder_newtype("constant®,10), the compiled angle look-up table will also

be constant, and thus won't be computed at each iteration. Also, when you call
cordicsincos_mex, you will not need to give it the input argument for the number of
iterations. If you pass in the number of iterations, the MEX-function will error.

The data type of the input parameters determines whether the cordicsincos function
performs fixed-point or floating-point calculations. When MATLAB generates code for
this file, code is only generated for the specific data type. For example, if the THETA
input argument is fixed point, then only fixed-point code is generated.

inp = {thRadFxp, coder.newtype(“constant”,10)}; % example inputs for the function
fiaccel(“cordicsincos”, -

-0", "cordicsincos_mex", "-args®, inp)
First, calculate sine and cosine by calling cordicsincos.
tstart = tic;

cordicsincos(thRadFxp,10);
telapsed_Mcordicsincos = toc(tstart);

Next, calculate sine and cosine by calling the MEX-function cordicsincos_mex.
cordicsincos_mex(thRadFxp); % load the MEX file
tstart = tic;

cordicsincos_mex(thRadFxp);
telapsed_MEXcordicsincos = toc(tstart);

Now, compare the speed. Type the following at the MATLAB command line to see the
speed improvement on your platform:

fiaccel_speedup = telapsed_Mcordicsincos/telapsed_MEXcordicsincos;
To clean up the temporary directory, run the following commands:

clear cordicsincos_mex;
status = tempdirObj.cleanUp;

Calculating SIN and COS Using Lookup Tables

There are many lookup table-based approaches that may be used to implement fixed-
point sine and cosine approximations. The following is a low-cost approach based on a
single real-valued lookup table and simple nearest-neighbor linear interpolation.
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Single Lookup Table Based Approach

The sin and cos methods of the Fi object in the Fixed-Point Designer approximate
the MATLAB® builtin floating-point sin and cos functions, using a lookup table-
based approach with simple nearest-neighbor linear interpolation between values. This
approach allows for a small real-valued lookup table and uses simple arithmetic.

Using a single real-valued lookup table simplifies the index computation and the overall
arithmetic required to achieve very good accuracy of the results. These simplifications
yield relatively high speed performance and also relatively low memory requirements.

Understanding the Lookup Table Based SIN and COS Implementation
Lookup Table Size and Accuracy

Two important design considerations of a lookup table are its size and its accuracy. It is
not possible to create a table for every possible input value . It is also not possible to be

perfectly accurate due to the quantization of in(u) op cos(u) lookup table values.

As a compromise, the Fixed-Point Designer SIN and COS methods of FI use an 8-bit
lookup table as part of their implementation. An 8-bit table is only 256 elements long,

so it is small and efficient. Eight bits also corresponds to the size of a byte or a word on
many platforms. Used in conjunction with linear interpolation, and 16-bit output (lookup
table value) precision, an 8-bit-addressable lookup table provides both very good accuracy
and performance.

Initializing the Constant SIN Lookup Table Values

For implementation simplicity, table value uniformity, and speed, a full sinewave table is
used. First, a quarter-wave SIN function is sampled at 64 uniform intervals in the range
[0, p1/2) radians. Choosing a signed 16-bit fractional fixed-point data type for the table
values, 1.e., tblValsNT = numerictype(l,16,15), produces best precision results

in the SIN output range [-1.0, 1.0). The values are pre-quantized before they are set, to
avoid overflow warnings.

tblValsNT = numerictype(l1,16,15);
quarterSinDblFItPtVals = (sin(2*pi*((0:63) ./ 256)))";
endpointQuantized_Plusl = 1.0 - double(eps(fi(0,tblValsNT)));

halfSinWaveDblFItPtVals = ...
[quarterSinDbIFItPtVals;
endpointQuantized_Plusl;
Fflipud(quarterSinDbIFItPtVals(2:end))];
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FfullSinWaveDblIFItPtvals = ...
[halfSinWaveDblFItPtVals; -halfSinWaveDblFItPtVals];

FI_SIN_LUT = Fi(fullSinWwaveDblFItPtVals, tblValsNT);
Overview of Algorithm Implementation

The implementation of the Fixed-Point Designer sin and cos methods of i objects
involves first casting the fixed-point angle inputs # (in radians) to a pre-defined data
type in the range [0, 2pi]. For this purpose, a modulo-2pi operation is performed to obtain
the fixed-point input value inpVal InRange in the range [0, 2pi] and cast to in the best
precision binary point scaled unsigned 16-bit fixed-point type numerictype(0,16,13):

% Best UNSIGNED type for real-world value range [0, 2*pi],
% which maps to fixed-point stored integer vals [0, 51472].
inpInRangeNT = numerictype(0,16,13);

Next, we get the 16-bit stored unsigned integer value from this in-range fixed-point FI
angle value:

1dxUFIX16 = fi(storedInteger(inpVallnRange), numerictype(0,16,0));

We multiply the stored integer value by a normalization constant, 65536/51472. The
resulting integer value will be in a full-scale uint16 index range:

normConst_NT
normConstant
fullScaleldx
1dXUFIX16(:)

= numerictype(0,32,31);

= Fi1(65536/51472, normConst_NT);

= normConstant * idxUFIX16;

= fullScaleldx;

The top 8 most significant bits (MSBs) of this full-scale unsigned 16-bit index 1dxXUFI1X16
are used to directly index into the 8-bit sine lookup table. Two table lookups are
performed, one at the computed table index location lutValBelow, and one at the next
index location lutValAbove:

idxUint8MSBs = storedlnteger(bitsliceget(idxUFIX16, 16, 9));
zeroBasedldx = intl6(idxUint8MSBs);

lutvalBelow = FI_SIN_LUT(zeroBasedldx + 1);

lutValAbove = FI_SIN_LUT(zeroBasedldx + 2);

The remaining 8 least significant bits (LSBs) of 1dXUFI1X16 are used to interpolate
between these two table values. The LSB values are treated as a normalized scaling
factor with 8-bit fractional data type rFracNT:
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rFracNT = numerictype(0,8,8); % fractional remainder data type
idxFrac8LSBs = reinterpretcast(bitsliceget(idxUFI1X16,8,1), rFracNT);
rFraction = 1dxFrac8LSBs;

A real multiply is used to determine the weighted difference between the two points. This
results in a simple calculation (equivalent to one product and two sums) to obtain the
interpolated fixed-point sine result:

temp = rFraction * (lutValAbove - lutValBelow);
rslt = lutvalBelow + temp;
Example

Using the above algorithm, here is an example of the lookup table and linear
interpolation process used to compute the value of SIN for a fixed-point input
inpvVallnRange = 0.425 radians:

% Use an arbitrary input value (e.g., 0.425 radians)
inpInRangeNT = numerictype(0,16,13); % best precision, [0, 2*pi] radians
inpVallnRange = fi(0.425, inplInRangeNT); % arbitrary fixed-point input angle

% Normalize its stored integer to get full-scale unsigned 16-bit integer index

FfullScaleldx
1dxUFIX16(:)

normConstant * 1dxUFIX16;
fullScaleldx;

1dxUFIX16 = fi(storedInteger(inpVallnRange), numerictype(0,16,0));
normConst_NT = numerictype(0,32,31);
normConstant = fi(65536/51472, normConst_NT);

% Do two table lookups using unsigned 8-bit integer index (i.e., 8 MSBs)

1dxUint8MSBs = storedInteger(bitsliceget(idxUFIX16, 16, 9));

zeroBasedldx = intl6(idxUint8MSBs); % zero-based table index value
lutvalBelow = FI_SIN_LUT(zeroBasedldx + 1); % 1st table lookup value
lutvValAbove = FI_SIN_LUT(zeroBasedldx + 2); % 2nd table lookup value

% Do nearest-neighbor interpolation using 8 LSBs (treat as fractional remainder)

rFracNT = numerictype(0,8,8); % fractional remainder data type
idxFrac8LSBs = reinterpretcast(bitsliceget(idxUFIX16,8,1), rFracNT);
rFraction = idxFrac8LSBs; % fractional value for linear interpolation
temp = rFraction * (lutvValAbove - lutvalBelow);

rsit = lutvalBelow + temp;

Here is a plot of the algorithm results:

x_vals
xldxLo

0:(pi/128):(pi/4d);
zeroBasedldx - 1;
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xldxHi = zeroBasedldx + 4;
figure; hold on; axis([x_vals(xldxLo) x_ vals(xldxHi) 0.25 0.65]);
plot(x_vals(xldxLo:xl1dxHi), double(FI_SIN_LUT(xldxLo:xldxHi)), "b"--7);
plot([x_vals(zeroBasedldx+1) x_vals(zeroBasedldx+2)],

[lutvValBelow lutValAbove], "k."); % Closest values
plot(0.425, double(rslt), “"r*"); % Interpolated fixed-point result
plot(0.425, sin(0.425), "gs®); % Double precision reference result
xlabel ("X"); ylabel ("SIN(X)");
lut_val_str "Fixed-point lookup table values®;

near_str = "Two closest fixed-point LUT values”;
interp_str = "Interpolated fixed-point result®;
ref_str = "Double precision reference value-®;

legend(lut_val_str, near_str, interp_str, ref_str);
title("Fixed-Point Designer Lookup Table Based SIN with Linear Interpolation®,
"fontsize®,12, "fontweight”,"b");
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Fixed-Point Designer Lookup Table Based SIN with Linear Interpolation

0.65
—%— Fixed-point lookup table values
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Computing Fixed-point Sine Using SIN

Create 1024 points between [-2*pi, 2*pi)

stepSize = pi/256;
thRadDbl = (-2*pi):stepSize:(2*pi - stepSize); % double precision floating-point
thRadFxp = sfi(thRadDbl, 12); % signed, 12-bit fixed-point inputs

Compare fixed-point SIN vs. double-precision SIN results

fxpSinTh = sin(thRadFxp); % fFixed-point results
sinThRef = sin(double(thRadFxp)); % reference results
errSinRef = sinThRef - double(fxpSinTh);

figure; hold on; axis([-2*pi 2*pi -1.25 1.25]);
plot(thRadFxp, sinThRef, "b");
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plot(thRadFxp, fxpSinTh,
plot(thRadFxp, errSinRef,
ylabel ("sin(\Theta) ", "fontsize",12, "fontweight®™,"b");
set(gca, "XTick",-2*pi:pi/2:2*pi);
set(gca, "XTickLabel ", ...

{"-2*pi~, "-3*pi/2", "-pi*, "-pi/2-,

0", "pi/27, "pi°, "3*pi/27,"2*pi"});
set(gca, "YTick",-1:0.5:1);
set(gca, "YTickLabel " ,{"-1.0","-0.5","0","0.5","1.0"});
ref_str = "Reference: sin(double(\Theta))";
fxp_str = sprintf("16-bit Fixed-Point SIN with 12-bit Inputs®);
err_str = sprintf("Error (max = %f)", max(abs(errSinRef)));
legend(ref_str, fxp_str, err_str);
title(fxp_str, "fontsize®,12, " fontweight®,"b");

");
ro);

16-bit Fixed-Point SIN with 12-bit Inputs

— Reference: sinfdouble &))
wor - —— 16-bit Fixed-Paint SIN with 12-bit Inputs
Error (max = 0.000224)

05 /
g 0
s}

051

101

=2'pi -3pil2 -pi -pil2 0 pif2 pi 3'pir2 2*pl
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= 915

LSB Error: 1 LSB

Compute the LSB Error

figure;
fracLen = fxpSinTh.FractionLength;
plot(thRadFxp, abs(errSinRef) * pow2(fracLen));
set(gca, "XTick"™,-2*pi:pi/2:2*pi);
set(gca, "XTickLabel ", . ..

{"-2*pi~", "-3*pi/2°, "-pi", "-pi/2-,

T0%, Tpi/27, TpiT, "3*pi/27,"2*pi });

ylabel (sprintf("LSB Error: 1 LSB = 2"{-%d}",fracLen), "fontsize",12, "fontweight”,"b");
title("LSB Error: 16-bit Fixed-Point SIN with 12-bit Inputs”,"fontsize",12, "fontweight

axis([-2*pi 2*pi 0 8]);

LSB Error: 16-bit Fixed-Point SIN with 12-bit Inputs

0
2'pi -3*pil2 pi pii2 0 pif2 pi 3'pi2  2*pi

Compute Noise Floor
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fft_mag = abs(fft(double(fxpSinTh)));

max_mag = max(fft_mag);

mag_db = 20*loglO(Fft_mag/max_mag);

figure;

hold on;

plot(0:1023, mag_db);

plot(0:1023, zeros(1,1024),"r--"); % Normalized peak (O dB)

plot(0:1023, -64.*ones(1,1024),"r--"); % Noise floor level (dB)

ylabel ("dB Magnitude®, "fontsize",12, "fontweight®,"b");

title("64 dB Noise Floor: 16-bit Fixed-Point SIN with 12-bit Inputs”®, ...
"fontsize®,12, "fontweight®,"b");

% axis([0 1023 -120 0]); full FFT

axis([0 round(1024*(pi/8)) -100 10]); % zoom in

set(gca, "XTick",[0 round(1024*pi/16) round(1024*pi/8)]);

set(gca, "XTickLabel " ,{"0","pi/16","pi/8"});
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dB Magnitude

1DE4 dB Noise Floor: 16-bit Fixed-Point SIN with 12-bit Inputs

0 pil6 pifd

Comparing the Costs of the Fixed-Point Approximation Algorithms
The fixed-point CORDIC algorithm requires the following operations:

+ 1 table lookup per iteration
+ 2 shifts per iteration

+ 3 additions per iteration

The simplified single lookup table algorithm with nearest-neighbor linear interpolatiom
requires the following operations:

+ 2 table lookups

* 1 multiplication
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* 2 additions

In real world applications, selecting an algorithm for the fixed-point trigonometric
function calculations typically depends on the required accuracy, cost and hardware
constraints.

close all; % close all figure windows
References

1 Jack E. Volder, The CORDIC Trigonometric Computing Technique, IRE
Transactions on Electronic Computers, Volume EC-8, September 1959, pp330-334.

2 Ray Andraka, A survey of CORDIC algorithm for FPGA based computers,
Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field
programmable gate arrays, Feb. 22-24, 1998, pp191-200



Calculate Fixed-Point Arctangent

Calculate Fixed-Point Arctangent

This example shows how to use the CORDIC algorithm, polynomial approximation,
and lookup table approaches to calculate the fixed-point, four quadrant inverse
tangent. These implementations are approximations to the MATLAB® built-in function
atan2. An efficient fixed-point arctangent algorithm to estimate an angle is critical

to many applications, including control of robotics, frequency tracking in wireless
communications, and many more.

Calculating atan2(y, x) Using the CORDIC Algorithm
Introduction

The cordicatan2 function approximates the MATLAB® atan2 function, using a
CORDIC-based algorithm. CORDIC is an acronym for COordinate Rotation DIgital
Computer. The Givens rotation-based CORDIC algorithm (see [1,2]) is one of the most
hardware efficient algorithms because it only requires iterative shift-add operations.
The CORDIC algorithm eliminates the need for explicit multipliers, and is suitable for
calculating a variety of functions, such as sine, cosine, arcsine, arccosine, arctangent,
vector magnitude, divide, square root, hyperbolic and logarithmic functions.

CORDIC Vectoring Computation Mode

The CORDIC vectoring mode equations are widely used to calculate atan(y/x). In
vectoring mode, the CORDIC rotator rotates the input vector towards the positive X-
axis to minimize the ¥ component of the residual vector. For each iteration, if the ¥
coordinate of the residual vector is positive, the CORDIC rotator rotates clockwise (using
a negative angle); otherwise, it rotates counter-clockwise (using a positive angle). If

the angle accumulator is initialized to 0, at the end of the iterations, the accumulated
rotation angle is the angle of the original input vector.

In vectoring mode, the CORDIC equations are:
Tis1 = Ti — i * di % 2 i
Yisl1 = Yi +xied; =2 i

zi41 = zi +di* atan(2 I.}is the angle accumulator
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where @i = +1if i <1 and —1 otherwise;

i=0,1,...N —1 and N is the total number of iterations.

As N approaches +o0 ;
9 3
an = Axy/x5+ g
v =10

zn = zp + atan(yp/xo)

N=1
Ax = 1/(cos(atan(2")) = cos(atan(2 [}J # ..o cosatan(2 (N "].].J H V1422

=0

As explained above, the arctangent can be directly computed using the vectoring

mode CORDIC rotator with the angle accumulator initialized to zero, i.e., 20 = Us and
zy == atan(yy/xo)

Understanding the CORDICATAN2 Code

Introduction

The cordicatan2 function computes the four quadrant arctangent of the elements of x

and y, where ~ 7 = ATAN2(y.x) = 47 cordicatan2 calculates the arctangent using
the vectoring mode CORDIC algorithm, according to the above CORDIC equations.

Initialization

The cordicatan2 function performs the following initialization steps:

* T is set to the initial X input value.
+ I is set to the initial Y input value.

* X0 1s set to zero.
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After NN iterations, these initial values lead to <N = atarn (vo/z0)
Shared Fixed-Point and Floating-Point CORDIC Kernel Code

The MATLAB code for the CORDIC algorithm (vectoring mode) kernel portion is as
follows (for the case of scalar X, y, and z). This same code is used for both fixed-point and
floating-point operations:

function [x, y, z] = cordic_vectoring_kernel(x, y, z, inpLUT, n)
% Perform CORDIC vectoring kernel algorithm for N kernel iterations.
Xtmp = X;

ytmp = y;
for idx = 1:n
ify<o
x(:) = x - ytmp;
y() =y + xtmp;
z(:) = z - inpLUT(idx);
else
x(:) = x + ytmp;
y(:) =y - xtmp;
z(:) = z + inpLUT(idx);
end
xtmp = bitsra(x, idx); % bit-shift-right for multiply by 27"(-idx)
ytmp = bitsra(y, idx); % bit-shift-right for multiply by 27(-idx)
end

Visualizing the Vectoring Mode CORDIC lterations

The CORDIC algorithm is usually run through a specified (constant) number of
iterations since ending the CORDIC iterations early would break pipelined code, and the

CORDIC gain Au would not be constant because 1 would vary.

For very large values of 1, the CORDIC algorithm is guaranteed to converge, but not
always monotonically. As will be shown in the following example, intermediate iterations
occasionally rotate the vector closer to the positive X-axis than the following iteration
does. You can typically achieve greater accuracy by increasing the total number of
iterations.

Example
In the following example, iteration 5 provides a better estimate of the angle than

iteration 6, and the CORDIC algorithm converges in later iterations.
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Initialize the input vector with angle # = 43 degrees, magnitude = 1

origFormat = get(0, "format"); % store original format setting;
% restore this setting at the end.

format short

%

theta = 43*pi/180; % input angle in radians

Niter = 10; % number of iterations

inX = cos(theta); % x coordinate of the input vector
inY = sin(theta); % y coordinate of the input vector

%
% pre-allocate memories
zf = zeros(1l, Niter);
xF [inX, zeros(l, Niter)];
yf = [inY, zeros(l, Niter)];
angleLUT = atan(2.”-(0:Niter-1)); % pre-calculate the angle lookup table
%
% Call CORDIC vectoring kernel algorithm
for k = 1:Niter
[xF(k+1), yf(k+1l), zf(k)] = Fixed.internal.cordic_vectoring_kernel_private(inX, inY
end

The following output shows the CORDIC angle accumulation (in degrees) through 10
iterations. Note that the 5th iteration produced less error than the 6th iteration, and that
the calculated angle quickly converges to the actual input angle afterward.

angleAccumulator = zf*180/pi; angleError = angleAccumulator - theta*180/pi;
fprintf("lteration: %2d, Calculated angle: %7.3F, Error in degrees: %10g, Error in bit:
[(1:Niter); angleAccumulator(:)"; angleError(:)";log2(abs(zf(:)"-theta))]);

Iteration: 1, Calculated angle: 45.000, Error in degrees: 2, Error in bits:
Iteration: 2, Calculated angle: 18.435, Error in degrees: -24.5651, Error in bits:
Iteration: 3, Calculated angle: 32.471, Error in degrees: -10.5288, Error in bits:
Iteration: 4, Calculated angle: 39.596, Error in degrees: -3.40379, Error in bits:
Iteration: 5, Calculated angle: 43.173, Error in degrees: 0.172543, Error in bits:
Iteration: 6, Calculated angle: 41.383, Error in degrees: -1.61737, Error in bits:
Iteration: 7, Calculated angle: 42.278, Error in degrees: -0.722194, Error in bits:
Iteration: 8, Calculated angle: 42.725, Error in degrees: -0.27458, Error in bits:
Iteration: 9, Calculated angle: 42.949, Error in degrees: -0.0507692, Error in bits:
Iteration: 10, Calculated angle: 43.061, Error in degrees: 0.0611365, Error in bits:

As N approaches +2, the CORDIC rotator gain Ay approaches 1.64676. In this example,

the input (0. #0) was on the unit circle, so the initial rotator magnitude is 1. The
following output shows the rotator magnitude through 10 iterations:
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rotatorMagnitude = sqrt(xf."2+yf.~2); % CORDIC rotator gain through iterations
fprintf(" Iteration: %2d, Rotator magnitude: %g\n-",...
[(O:Niter); rotatorMagnitude(:)"]);

Iteration: 0O, Rotator magnitude: 1

Iteration: 1, Rotator magnitude: 1.41421
Iteration: 2, Rotator magnitude: 1.58114
Iteration: 3, Rotator magnitude: 1.6298
Iteration: 4, Rotator magnitude: 1.64248
Iteration: 5, Rotator magnitude: 1.64569
Iteration: 6, Rotator magnitude: 1.64649
Iteration: 7, Rotator magnitude: 1.64669
Iteration: 8, Rotator magnitude: 1.64674
Iteration: 9, Rotator magnitude: 1.64676
Iteration: 10, Rotator magnitude: 1.64676

Jod g o — [2, .9 _
Note that ¥n approaches 0, and #» approaches Anyf @5+ 45 = An, because ¥ 70 T ¥ = ].

yf(end)

y_n

y_n =

-0.0018

|><
5
|

= xf(end)

1.6468

figno = 1;
fidemo.fixpt_atan2_demo_plot(figno, xf, yf) %Vectoring Mode CORDIC Iterations
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Vectoring Mode CORDIC Iterations
DT 1 T T T T T T

s |teration O (Input) 2
0.6 | |=Iteration 1 -

Iteration 2
m—— |teration 3
0.5 [ | === lteration 4
Iteration 5
m— |teration &

0475 b
— |teration 7

figno = figno + 1; %Cumulative Angle and Rotator Magnitude Through Iterations
fidemo. Fixpt_atan2_demo_plot(figno,Niter, theta, angleAccumulator, rotatorMagnitude)
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Angle (degrees)

Magnitude

Cumulative Angle Through Iterations
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1

0 1 2 3 4 5 (5] 7 B 2] 10
lteration

Performing Overall Error Analysis of the CORDIC Algorithm

The overall error consists of two parts:

1 The algorithmic error that results from the CORDIC rotation angle being
represented by a finite number of basic angles.

2 The quantization or rounding error that results from the finite precision
representation of the angle lookup table, and from the finite precision arithmetic

used in fixed-point operations.

Calculate the CORDIC Algorithmic Error

theta = (-178:2:180)*pi/180; % angle in radians
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inXFIt = cos(theta); % generates input vector

inYfIt = sin(theta);

Niter = 12; % total number of iterations

zFlIt = cordicatan2(inYflt, inXFlt, Niter); % floating-point results

Calculate the maximum magnitude of the CORDIC algorithmic error by comparing the
CORDIC computation to the builtin atan2 function.

format long
cordic_algErr_real_world_value = max(abs((atan2(inYflt, inXflt) - zflt)))

cordic_algErr_real_world_value

4.753112306290497e-04

The log base 2 error is related to the number of iterations. In this example, we use 12
iterations (i.e., accurate to 11 binary digits), so the magnitude of the error is less than

2“

cordic_algErr_bits = log2(cordic_algErr_real_world_value)

cordic_algErr_bits =

-11.038839889583048

Relationship Between Number of Iterations and Precision

Once the quantization error dominates the overall error, 1.e., the quantization error

is greater than the algorithmic error, increasing the total number of iterations won't
significantly decrease the overall error of the fixed-point CORDIC algorithm. You
should pick your fraction lengths and total number of iterations to ensure that the
quantization error is smaller than the algorithmic error. In the CORDIC algorithm, the
precision increases by one bit every iteration. Thus, there is no reason to pick a number
of iterations greater than the precision of the input data.

Another way to look at the relationship between the number of iterations and the
precision is in the right-shift step of the algorithm. For example, on the counter-clockwise
rotation

x(:) = x0 - bitsra(y,i);
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y(:) =y + bitsra(x0,i);

if 1 1s equal to the word length of y and x0, then bitsra(y, i) and bitsra(x0, i) shift
all the way to zero and do not contribute anything to the next step.

To measure the error from the fixed-point algorithm, and not the differences in input
values, compute the floating-point reference with the same inputs as the fixed-point
CORDIC algorithm.

inXfix = sFi(inXflt, 16, 14);

inYfix = sfi(inYflt, 16, 14);

zref = atan2(double(inYfix), double(inXfix));
zFix8 = cordicatan2(inYfix, inXfix, 8);

zFix10 = cordicatan2(inYfix, inXfix, 10);
zFix12 = cordicatan2(inYfix, inXfix, 12);
zFfix14 = cordicatan2(inYfix, inXfix, 14);
zFix15 = cordicatan2(inYfix, inXfix, 15);

cordic_err = bsxfun(@minus,zref,double([zfix8;zfix10;zfix12;zFfix14;zFix15]));

The error depends on the number of iterations and the precision of the input data. In
the above example, the input data is in the range [-1, +1], and the fraction length is 14.
From the following tables showing the maximum error at each iteration, and the figure
showing the overall error of the CORDIC algorithm, you can see that the error decreases
by about 1 bit per iteration until the precision of the data is reached.

iterations = [8, 10, 12, 14, 15];

max_cordicErr_real_world_value = max(abs(cordic_err~));

fprintf("lterations: %2d, Max error in real-world-value: %g\n=, ...
[iterations; max_cordicErr_real_world_value]);

real-world-value: 0.00773633
real-world-value: 0.00187695
real-world-value: 0.000501175
real-world-value: 0.000244621
real-world-value: 0.000244621

Iterations: 8, Max error
Iterations: 10, Max error
Iterations: 12, Max error
Iterations: 14, Max error
Iterations: 15, Max error i

- -
5 3 3 335

max_cordicErr_bits = log2(max_cordicErr_real_world_value);
fprintf (" Iterations: %2d, Max error in bits: %g\n",[iterations; max_cordicErr_bits]);

bits: -7.01414
bits: -9.05739
bits: -10.9624
bits: -11.9972
bits: -11.9972

Iterations: 8, Max error
Iterations: 10, Max error
Iterations: 12, Max error
Iterations: 14, Max error
Iterations: 15, Max error

- o o o
5 3 3 335
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figno = figno + 1;
fidemo. Fixpt_atan2_demo_plot(figno, theta, cordic_err)

. 10-*Overall Error of the Fixed-Point CORDIC Algorithm
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Accelerating the Fixed-Point CORD1CATAN2 Algorithm Using FIACCEL

You can generate a MEX function from MATLAB code using the MATLAB® fiaccel
command. Typically, running a generated MEX function can improve the simulation
speed, although the actual speed improvement depends on the simulation platform being
used. The following example shows how to accelerate the fixed-point cordicatan?2
algorithm using Fiaccel.

The fiaccel function compiles the MATLAB code into a MEX function. This step
requires the creation of a temporary directory and write permissions in that directory.
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tempdirObj = fidemo.fiTempdir("fixpt_atan2_demo®);

When you declare the number of iterations to be a constant (e.g., 12) using
coder.newtype("constant”,12), the compiled angle lookup table will also be
constant, and thus won't be computed at each iteration. Also, when you call the compiled
MEX file cordicatan2_mex, you will not need to give it the input argument for the
number of iterations. If you pass in the number of iterations, the MEX function will
error.

The data type of the input parameters determines whether the cordicatan2 function
performs fixed-point or floating-point calculations. When MATLAB generates code for
this file, code is only generated for the specific data type. For example, if the inputs are
fixed point, only fixed-point code is generated.

inp = {inYfix, inXFix, coder.newtype(“constant”,12)}; % example inputs for the functiol
fiaccel(“cordicatan2®, *© "cordicatan2_mex", "-args®, inp)

-0",
First, calculate a vector of 4 quadrant atan2 by calling cordicatan2.

tstart = tic;
cordicatan2(inYfix, inXFix,Niter);
telapsed_Mcordicatan2 = toc(tstart);

Next, calculate a vector of 4 quadrant atan2 by calling the MEX-function
cordicatan2_mex

cordicatan2_mex(inYFix, inXfix); % load the MEX file
tstart = tic;

cordicatan2_mex(inYFix, inXFix);
telapsed_MEXcordicatan2 = toc(tstart);

Now, compare the speed. Type the following in the MATLAB command window to see the
speed improvement on your specific platform:

fiaccel_speedup = telapsed_Mcordicatan2/telapsed_MEXcordicatan2;

To clean up the temporary directory, run the following commands:

clear cordicatan2_mex;
status = tempdirObj.cleanUp;

Calculating atan2(y, x) Using Chebyshev Polynomial Approximation

Polynomial approximation is a multiply-accumulate (MAC) centric algorithm. It can be a
good choice for DSP implementations of non-linear functions like atan(x).

3-79



3 Fixed-Point Topics

For a given degree of polynomial, and a given function F(x) = atan(x) evaluated over
the interval of [-1, +1], the polynomial approximation theory tries to find the polynomial

that minimizes the maximum value of [ ’() — f(x) |, where P(X) is the approximating
polynomial. In general, you can obtain polynomials very close to the optimal one by
approximating the given function in terms of Chebyshev polynomials and cutting off the
polynomial at the desired degree.

The approximation of arctangent over the interval of [-1, +1] using the Chebyshev
polynomial of the first kind is summarized in the following formula:

5

atan(z) =23 {{;j_:“'; \(z)
where

g=1/(1+v?2)

x € [-1,+1]

To(z) =1

Ty(z)=x

Tu-]':'r:l - 3.!'1:,{.4"] - I-r i[.f'}.

Therefore, the 3rd order Chebyshev polynomial approximation is

atan(xr) = 0.9705662T4847714]1 = x — (0.1895141649746G01 = 3.

The 5th order Chebyshev polynomial approximation is

afan(z) = 0.9949493661 16654 = + — 0.28T060635532652 =+ x + 0.078037176446441 * z°.
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The 7th order Chebyshev polynomial approximation is

atan(x) = 0.999133448222780+x — 0.320533292381664 * x*
+ 0.144982490144465 + 27 —  0.038254464970299 + 7.

You can obtain four quadrant output through angle correction based on the properties of
the arctangent function.

Comparing the Algorithmic Error of the CORDIC and Polynomial Approximation Algorithms

In general, higher degrees of polynomial approximation produce more accurate final
results. However, higher degrees of polynomial approximation also increase the
complexity of the algorithm and require more MAC operations and more memory. To
be consistent with the CORDIC algorithm and the MATLAB atan2 function, the input
arguments consist of both X and y coordinates instead of the ratio y/x.

To eliminate quantization error, floating-point implementations of the CORDIC and
Chebyshev polynomial approximation algorithms are used in the comparison below. An
algorithmic error comparison reveals that increasing the number of CORDIC iterations
results in less error. It also reveals that the CORDIC algorithm with 12 iterations
provides a slightly better angle estimation than the 5th order Chebyshev polynomial
approximation. The approximation error of the 3rd order Chebyshev Polynomial is about
8 times larger than that of the 5th order Chebyshev polynomial. You should choose the
order or degree of the polynomial based on the required accuracy of the angle estimation
and the hardware constraints.

The coefficients of the Chebyshev polynomial approximation for atan(x) are shown in
ascending order of X.

constA3 = [0.970562748477141, -0.189514164974601]; % 3rd order
constA5 = [0.994949366116654,-0.287060635532652,0.078037176446441]; % 5th order

constA7 [0.999133448222780 -0.320533292381664 0.144982490144465. ..
-0.038254464970299]; % 7th order

theta = (-90:1:90)*pi/180; % angle In radians

inXFIt = cos(theta);

inYflIt = sin(theta);

zFItRef = atan2(inYflt, InXflt); % ldeal output from ATAN2 function

zFItp3 = fidemo.poly_atan2(inYFlt, inXFlt,3,constA3); % 3rd order polynomial

zFItp5 = fidemo.poly_atan2(inYFlt, inXFlt,5,constA5); % 5th order polynomial

zFltp7 = fidemo.poly_atan2(inYFlt, inXFlt,7,constA7); % 7th order polynomial

zflt8 = cordicatan2(inYflt, inXflt, 8); % CORDIC alg with 8 iterations

zfItl2 = cordicatan2(inYflt, inXflt, 12); % CORDIC alg with 12 iterations
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The maximum algorithmic error magnitude (or infinity norm of the algorithmic error) for
the CORDIC algorithm with 8 and 12 iterations is shown below:

cordic_algErr = [zFfItRef;zfItRef] - [zfI1t8;zfItl2];

max_cordicAlgErr = max(abs(cordic_algErr=));

fprintf("lterations: %2d, CORDIC algorithmic error in real-world-value: %g\n®, ...
[[8,12]; max_cordicAlgErr(:)"1D);

Iterations: 8, CORDIC algorithmic error in real-world-value: 0.00772146
Iterations: 12, CORDIC algorithmic error in real-world-value: 0.000483258

The log base 2 error shows the number of binary digits of accuracy. The 12th iteration of
the CORDIC algorithm has an estimated angle accuracy of 2%

max_cordicAlgErr_bits = log2(max_cordicAlgErr);
fprintf("lterations: %2d, CORDIC algorithmic error in bits: %g\n~®,...
[[8.,12]; max_cordicAlgErr_bits(:)"]);

Iterations: 8, CORDIC algorithmic error in bits: -7.01691
Iterations: 12, CORDIC algorithmic error in bits: -11.0149

The following code shows the magnitude of the maximum algorithmic error of the
polynomial approximation for orders 3, 5, and 7:

poly_algErr [zFItRef;zFItRef;zFfItRef] - [zFItp3;zFItp5;zFfltp7];

max_polyAlgErr = max(abs(poly_algErr*));

fprintf("Order: %d, Polynomial approximation algorithmic error in real-world-value: %Q
[3:2:7; max_polyAlgErr(:)"D);

Order: 3, Polynomial approximation algorithmic error in real-world-value: 0.00541647
Order: 5, Polynomial approximation algorithmic error in real-world-value: 0.000679384
Order: 7, Polynomial approximation algorithmic error in real-world-value: 9.16204e-05

The log base 2 error shows the number of binary digits of accuracy.

max_polyAlgErr_bits = log2(max_polyAlgErr);
fprintf("Order: %d, Polynomial approximation algorithmic error in bits: %g\n", ...
[3:2:7; max_polyAlgErr_bits(:)"]);

Order: 3, Polynomial approximation algorithmic error in bits: -7.52843
Order: 5, Polynomial approximation algorithmic error in bits: -10.5235
Order: 7, Polynomial approximation algorithmic error in bits: -13.414

figno = figno + 1;
fidemo. fixpt_atan2_demo_plot(figno, theta, cordic_algErr, poly_algErr)
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Converting the Floating-Point Chebyshev Polynomial Approximation Algorithm to Fixed Point

Assume the input and output word lengths are constrained to 16 bits by the hardware,

and the 5th order Chebyshev polynomial is used in the approximation. Because the

dynamic range of inputs X, y and y/X are all within [-1, +1], you can avoid overflow by
picking a signed fixed-point input data type with a word length of 16 bits and a fraction
length of 14 bits. The coefficients of the polynomial are purely fractional and within (-1,
+1), so we can pick their data types as signed fixed point with a word length of 16 bits

and a fraction length of 15 bits (best precision). The algorithm is robust because (u/z)"

is within [-1, +1], and the multiplication of the coefficients and (/)" is within (-1, +1).
Thus, the dynamic range will not grow, and due to the pre-determined fixed-point data
types, overflow is not expected.
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Similar to the CORDIC algorithm, the four quadrant polynomial approximation-based

atan2 algorithm outputs estimated angles within [~ 7], Therefore, we can pick an
output fraction length of 13 bits to avoid overflow and provide a dynamic range of [-4,
+3.9998779296875].

The basic floating-point Chebyshev polynomial approximation of arctangent over the
interval [-1, +1] is implemented as the chebyPoly atan_fltpt local function in the
poly_atan2._m file.

function z = chebyPoly_atan_fltpt(y,x,N,constA,Tz,RoundingMethodStr)

tmp = y/X%;
switch N
case 3
z = constA(L)*tmp + constA(2)*tmp”3;
case 5
z = constA(L)*tmp + constA(2)*tmp”3 + constA(3)*tmp”5;
case 7
z = constA(1)*tmp + constA(2)*tmp”3 + constA(3)*tmpN5 + constA(4)*tmp/7;
otherwise
disp("Supported order of Chebyshev polynomials are 3, 5 and 7%);

end

The basic fixed-point Chebyshev polynomial approximation of arctangent over the
interval [-1, +1] is implemented as the chebyPoly_ atan_fixpt local function in the
poly_atan2.m file.

function z = chebyPoly_atan_fixpt(y,x,N,constA,Tz,RoundingMethodStr)

z = fi(0, "numerictype”, Tz, "RoundingMethod®, RoundingMethodStr);
Tx = numerictype(X);

tmp = fi(0, "numerictype”,Tx, "RoundingMethod”, RoundingMethodStr);
tmp(z) = Tx.divide(y, X); % y/X;

tmp2 fi(0, "numerictype”,Tx, "RoundingMethod®, RoundingMethodStr);
tmp3 fi(0, "numerictype”,Tx, "RoundingMethod®, RoundingMethodStr);
tmp2(:) = tmp*tmp; % (Y/x)"2
tmp3(:) = tmp2*tmp; % (y/x)"3

z(:) = constA(L)*tmp + constA(2)*tmp3; % for order N = 3

iT(N=5) ] (N=T7)
tmp5 = Fi(0, "numerictype”,Tx, "RoundingMethod®, RoundingMethodStr);
tmp5(:) = tmp3 * tmp2; % (Y/xX)"5
z(:) = z + constA(3)*tmp5; % for order N = 5
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end

if N ==
tmp7 = Fi(0, "numerictype”,Tx, "RoundingMethod®, RoundingMethodStr);
tmp7(z) = tmp5 * tmp2; % (Y/xXO)N7
z(:) = z + constA(4)*tmp7; %For order N = 7

end

The universal four quadrant atan2 calculation using Chebyshev polynomial
approximation is implemented in the poly_atan2._m file.

function z = poly_atan2(y,x,N,constA,Tz,RoundingMethodStr)

if

els

end

nargin < 5

% floating-point algorithm
fhandle = @chebyPoly atan_fltpt;
Tz = [1:

RoundingMethodStr = [];

z = zeros(size(y));
e

% fixed-point algorithm

fhandle = @chebyPoly atan_fixpt;
%pre-allocate output

z = fi(zeros(size(y)), "numerictype®, Tz, "RoundingMethod®, RoundingMethodStr);

% Apply angle correction to obtain four quadrant output
for idx = 1:length(y)

% fist quadrant
if abs(x(idx)) >= abs(y(idx))

% (0, pi/4]

z(idx) = feval(fhandle, abs(y(idx)), abs(x(idx)), N, constA, Tz, RoundingMetl
else

% (pi/4, pi/2)

z(idx) = pi/2 - feval(fhandle, abs(x(idx)), abs(y(idx)), N, constA, Tz, Roun
end

if x(idx) < 0
% second and third quadrant
if y(idx) < 0
z(idx) = -pi + z(idx);
else
z(idx) = pi - z(idx);
end
else % fourth quadrant
if y(idx) <0
z(idx) = -z(idx);
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end
end
end

Performing the Overall Error Analysis of the Polynomial Approximation Algorithm

Similar to the CORDIC algorithm, the overall error of the polynomial approximation
algorithm consists of two parts - the algorithmic error and the quantization error. The
algorithmic error of the polynomial approximation algorithm was analyzed and compared
to the algorithmic error of the CORDIC algorithm in a previous section.

Calculate the Quantization Error

Compute the quantization error by comparing the fixed-point polynomial approximation
to the floating-point polynomial approximation.

Quantize the inputs and coefficients with convergent rounding:

inXfFix = Fi(fi(inXflt, 1, 16, 14,"RoundingMethod”, "Convergent®), "fimath",[1);
inYfix = fi(fiinyflt, 1, 16, 14,"RoundingMethod”, "Convergent®), "fimath",[1);

constAfix3 = fi(fi(constA3, 1, 16, "RoundingMethod®, "Convergent®), "fimath",[1);
constAfix5 = fi(fi(constA5, 1, 16, "RoundingMethod®, "Convergent®), "fimath",[]);
constAfix7 = fi(fi(constA7, 1, 16, "RoundingMethod®, "Convergent®), "fimath",[]);

Calculate the maximum magnitude of the quantization error using Floor rounding:

ord = 3:2:7; % using 3rd, 5th, 7th order polynomials

Tz = numerictype(l, 16, 13); % output data type

zfix3p = Ffidemo.poly_atan2(inYFix, inXfix,ord(1),constAfix3,Tz,"Floor™); % 3rd order
zfix5p = fidemo.poly_atan2(inYFix, inXfix,ord(2),constAfix5,Tz,"Floor™); % 5th order
zfix7p = fidemo.poly_atan2(inYFix, inXfix,ord(3),constAfix7,Tz,"Floor™); % 7th order

poly_quantErr = bsxfun(@minus, [zFltp3;zFfltp5;zFfltp7], double([zFix3p;zFix5p;zFix7p]))
max_polyQuantErr_real_world_value = max(abs(poly_quantErr®));
max_polyQuantErr_bits = log2(max_polyQuantErr_real_world_value);
fprintf("PolyOrder: %2d, Quant error in bits: %g\n-",...
[ord; max_polyQuantErr_bits]);

PolyOrder: 3, Quant error in bits: -12.7101
PolyOrder: 5, Quant error in bits: -12.325
PolyOrder: 7, Quant error in bits: -11.8416

Calculate the Overall Error

Compute the overall error by comparing the fixed-point polynomial approximation to the
builtin atan2 function. The ideal reference output is zFItRe¥F. The overall error of the
7th order polynomial approximation is dominated by the quantization error, which is due
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Error 4¢ (radians}

to the finite precision of the input data, coefficients and the rounding effects from the
fixed-point arithmetic operations.

poly_err = bsxfun(@minus, zfltRef, double([zFfix3p;zFfix5p;zFfix7pl));
max_polyErr_real_world_value = max(abs(poly_err-));
max_polyErr_bits = log2(max_polyErr_real_world_value);
fprintf("PolyOrder: %2d, Overall error in bits: %g\n", ...

[ord; max_polyErr_bits]);

PolyOrder: 3, Overall error in bits: -7.51907
PolyOrder: 5, Overall error in bits: -10.2497
PolyOrder: 7, Overall error in bits: -11.5883

figno = figno + 1;
fidemo. fixpt_atan2_demo_plot(figno, theta, poly_err)
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The Effect of Rounding Modes in Polynomial Approximation

Compared to the CORDIC algorithm with 12 iterations and a 13-bit fraction length in the
angle accumulator, the fifth order Chebyshev polynomial approximation gives a similar
order of quantization error. In the following example, Nearest, Round and Convergent
rounding modes give smaller quantization errors than the Floor rounding mode.

Maximum magnitude of the quantization error using Floor rounding
poly5 quantErrFloor = max(abs(poly_quantErr(2,:)));

poly5 quantErrFloor_bits = log2(poly5 quantErrFloor)

poly5 quantErrFloor_bits =

-12.324996933210334

For comparison, calculate the maximum magnitude of the quantization error using
Nearest rounding:

zFixp5n = fidemo.poly_atan2(inYFfix, inXFix,5,constAfix5,Tz, "Nearest”);
poly5_quantErrNearest = max(abs(zfltp5 - double(zfixp5n)));
poly5_quantErrNearest_bits = log2(poly5_gquantErrNearest)

set(0, “format®, origFormat); % reset MATLAB output format

poly5 quantErrNearest bits =

-13.175966487895451

Calculating atan2(y, x) Using Lookup Tables

There are many lookup table based approaches that may be used to implement fixed-
point argtangent approximations. The following is a low-cost approach based on a single
real-valued lookup table and simple nearest-neighbor linear interpolation.

Single Lookup Table Based Approach

The atan2 method of the Fi object in the Fixed-Point Designer™ approximates the
MATLAB® builtin floating-point atan2 function, using a single lookup table based
approach with simple nearest-neighbor linear interpolation between values. This
approach allows for a small real-valued lookup table and uses simple arithmetic.
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Using a single real-valued lookup table simplifies the index computation and the overall
arithmetic required to achieve very good accuracy of the results. These simplifications
yield a relatively high speed performance as well as relatively low memory requirements.

Understanding the Lookup Table Based ATAN2 Implementation
Lookup Table Size and Accuracy

Two important design considerations of a lookup table are its size and its accuracy. It is

not possible to create a table for every possible ¥/ input value. It is also not possible to
be perfectly accurate due to the quantization of the lookup table values.

As a compromise, the atan2 method of the Fixed-Point Designer Fi object uses an 8-bit
lookup table as part of its implementation. An 8-bit table is only 256 elements long, so it
is small and efficient. Eight bits also corresponds to the size of a byte or a word on many
platforms. Used in conjunction with linear interpolation, and 16-bit output (lookup table
value) precision, an 8-bit-addressable lookup table provides very good accuracy as well as
performance.

Overview of Algorithm Implementation

To better understand the Fixed-Point Designer implementation, first consider the
symmetry of the four-quadrant atan2(y,x) function. If you always compute the
arctangent in the first-octant of the x-y space (i.e., between angles 0 and pi/4 radians),
then you can perform octant correction on the resulting angle for any y and x values.

As part of the pre-processing portion, the signs and relative magnitudes of y and x are
considered, and a division is performed. Based on the signs and magnitudes of y and x,
only one of the following values is computed: y/x, x/y, -y/X, -x/y, -y/-X, -x/-y. The unsigned
result that is guaranteed to be non-negative and purely fractional is computed, based
on the a priori knowledge of the signs and magnitudes of y and x. An unsigned 16-bit
fractional fixed-point type is used for this value.

The 8 most significant bits (MSBs) of the stored unsigned integer representation of

the purely-fractional unsigned fixed-point result is then used to directly index an 8-bit
(Iength-256) lookup table value containing angle values between 0 and pi/4 radians. Two
table lookups are performed, one at the computed table index location lutValBelow, and
one at the next index location lutValAbove:

1dxUiInt8MSBs
zeroBasedldx

bitsliceget(idxUFIX16, 16, 9);
intl6(idxUint8MSBs);

3-89



3 Fixed-Point Topics

3-90

lutvalBelow
lutValAbove

F1_ATAN_LUT(zeroBasedldx + 1);
F1_ATAN_LUT(zeroBasedldx + 2);

The remaining 8 least significant bits (LSBs) of idxUFIX16 are used to interpolate
between these two table values. The LLSB values are treated as a normalized scaling
factor with 8-bit fractional data type rFracNT:

rFracNT = numerictype(0,8,8); % fractional remainder data type
idxFrac8LSBs = reinterpretcast(bitsliceget(idxUFI1X16,8,1), rFracNT);
rFraction = 1dxFrac8LSBs;

The two lookup table values, with the remainder (rFraction) value, are used to perform
a simple nearest-neighbor linear interpolation. A real multiply is used to determine
the weighted difference between the two points. This results in a simple calculation
(equivalent to one product and two sums) to obtain the interpolated fixed-point result:

temp = rFraction * (lutValAbove - lutValBelow);
rslt = lutvalBelow + temp;

Finally, based on the original signs and relative magnitudes of y and x, the output result
is formed using simple octant-correction logic and arithmetic. The first-octant [0, pi/4]
angle value results are added or subtracted with constants to form the octant-corrected
angle outputs.

Computing Fixed-point Argtangent Using ATAN2

You can call the atan2 function directly using fixed-point or floating-point inputs. The
lookup table based algorithm is used for the fixed-point atan2 implementation:

ZFXpLUT = atan2(inYFix, inXFix);
Calculate the Overall Error

You can compute the overall error by comparing the fixed-point lookup table based
approximation to the builtin atan2 function. The ideal reference output is zFItRef.

lut_err = bsxfun(@minus, zFltRef, double(zFxpLUT));
max_HlutErr_real_world_value = max(abs(lut_err=));
max_lutErr_bits = log2(max_lutErr_real_world_value);
fprintf(“Overall error in bits: %g\n", max_lutErr_bits);

Overall error in bits: -12.6743

figno = figno + 1;
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Error ¢ (radians)

fidemo. Fixpt_atan2_demo_plot(figno, theta, lut_err)
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Comparison of Overall Error Between the Fixed-Point Implementations

As was done previously, you can compute the overall error by comparing the fixed-point
approximation(s) to the builtin atan2 function. The ideal reference output is zFItRef.

zFixCDC15 = cordicatan2(inYfix, inXfix, 15);
cordic_151_err = bsxfun(@minus, zfltRef, double(zfixCDC15));
poly 7p_err = bsxfun(@minus, zfltRef, double(zFix7p));

figno = figno + 1;
fidemo.Fixpt_atan2_demo_plot(figno, theta, cordic_151_err, poly_7p_err, lut_err)
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Comparing the Costs of the Fixed-Point Approximation Algorithms
The fixed-point CORDIC algorithm requires the following operations:

+ 1 table lookup per iteration
+ 2 shifts per iteration
+ 3 additions per iteration

The N-th order fixed-point Chebyshev polynomial approximation algorithm requires the
following operations:

+ 1 division

*  (N+1) multiplications
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* (N-1)/2 additions

The simplified single lookup table algorithm with nearest-neighbor linear interpolation
requires the following operations:

* 1 division

+ 2 table lookups

* 1 multiplication

+ 2 additions

In real world applications, selecting an algorithm for the fixed-point arctangent
calculation typically depends on the required accuracy, cost and hardware constraints.

close all; % close all figure windows
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Compute Sine and Cosine Using CORDIC Rotation Kernel

This example shows how to compute sine and cosine using a CORDIC rotation kernel
in MATLAB®. CORDIC-based algorithms are critical to many embedded applications,
including motor controls, navigation, signal processing, and wireless communications.

Introduction

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens
rotation-based CORDIC algorithm (see [1,2]) is one of the most hardware efficient
algorithms because it only requires iterative shift-add operations. The CORDIC
algorithm eliminates the need for explicit multipliers, and is suitable for calculating
a variety of functions, such as sine, cosine, arcsine, arccosine, arctangent, vector
magnitude, divide, square root, hyperbolic and logarithmic functions.

The fixed-point CORDIC algorithm requires the following operations:

* 1 table lookup per iteration
+ 2 shifts per iteration

+ 3 additions per iteration
CORDIC Kernel Algorithm Using the Rotation Computation Mode

You can use a CORDIC rotation computing mode algorithm to calculate sine and cosine
simultaneously, compute polar-to-cartesian conversions, and for other operations. In
the rotation mode, the vector magnitude and an angle of rotation are known and the
coordinate (X-Y) components are computed after rotation.

The CORDIC rotation mode algorithm begins by initializing an angle accumulator with
the desired rotation angle. Next, the rotation decision at each CORDIC iteration is done
in a way that decreases the magnitude of the residual angle accumulator. The rotation
decision is based on the sign of the residual angle in the angle accumulator after each
iteration.

In rotation mode, the CORDIC equations are:
ziql = % — dj * atan(2 "}

Tip] =@ = Y v d; x 277
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i

Vit1 = Ui+ Tiw d; +2
where @i = —1if i <1, and +1 otherwise;
i=10,1,...N — 1 and N is the total number of iterations.

This provides the following result as N approaches +oa:
=1

xy = Anlapeos zp — yosin zp)

vy = Ax(ygeos zg + xgsin zp)

Typically IV is chosen to be a large-enough constant value. Thus, A% may be pre-
computed.

In rotation mode, the CORDIC algorithm is limited to rotation angles between T/2 and

T/2 To support angles outside of that range, quadrant correction is often used.
Efficient MATLAB Implementation of a CORDIC Rotation Kernel Algorithm

A MATLAB code implementation example of the CORDIC Rotation Kernel algorithm
follows (for the case of scalar X, y, and z). This same code can be used for both fixed-point
and floating-point operation.

CORDIC Rotation Kernel

function [Xx, y, z] = cordic_rotation_kernel(x, y, z, inpLUT, n)
% Perform CORDIC rotation kernel algorithm for N iterations.
xtmp = X;
ytmp = y;
for idx = 1:n
ifz<0
z(:) = accumpos(z, inpLUT(idx));
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x(:) = accumpos(x, ytmp);
y(:) = accumneg(y, Xtmp);
else
z(:) = accumneg(z, inpLUT(idx));
x(:) = accumneg(x, ytmp);
y(:) = accumpos(y, xtmp);
end
xtmp = bitsra(x, idx); % bit-shift-right for multiply by 2"(-idx)
ytmp = bitsra(y, idx); % bit-shift-right for multiply by 27(-idx)

end
CORDIC-Based Sine and Cosine Computation Using Normalized Inputs
Sine and Cosine Computation Using the CORDIC Rotation Kernel

The judicious choice of initial values allows the CORDIC kernel rotation mode algorithm
to directly compute both sine and cosine simultaneously.

First, the following initialization steps are performed:

* The angle input look-up table inpLUT is set to atan(2 .~ -(0:N-1)).

* %0 is set to the # input argument value.

. ) F "
0 is set to 1/ AN,

+ i is set to zero.

After IV iterations, these initial values lead to the following outputs as N approaches
00
* xy = cos()

* yn == sin(f)

Other rotation-kernel-based function approximations are possible via pre- and post-
processing and using other initial conditions (see [1,2]).

The CORDIC algorithm is usually run through a specified (constant) number of
iterations since ending the CORDIC iterations early would break pipelined code, and the

CORDIC gain Au would not be constant because 1 would vary.

For very large values of 1, the CORDIC algorithm is guaranteed to converge, but not
always monotonically. You can typically achieve greater accuracy by increasing the total
number of iterations.
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Example

Suppose that you have a rotation angle sensor (e.g. in a servo motor) that uses formatted
integer values to represent measured angles of rotation. Also suppose that you have a 16-
bit integer arithmetic unit that can perform add, subtract, shift, and memory operations.
With such a device, you could implement the CORDIC rotation kernel to efficiently
compute cosine and sine (equivalently, cartesian X and Y coordinates) from the sensor
angle values, without the use of multiplies or large lookup tables.

sumWL = 16; % CORDIC sum word length

thNorm = -1.0:(27-8):1.0; % Normalized [-1.0, 1.0] angle values

theta = fi(thNorm, 1, sumWL); % Fixed-point angle values (best precision)
z NT = numerictype(theta); % Data type for Z

XyNT = numerictype(l, sumWL, sumWL-2); % Data type for X-Y

x_out = Fi(zeros(size(theta)), xyNT); % X array pre-allocation

y_out = fi(zeros(size(theta)), xyNT); % Y array pre-allocation

z_out = Fi(zeros(size(theta)), z NT); % Z array pre-allocation

niters = 13; % Number of CORDIC iterations

inpLUT = Ffi(atan(2 .~ (-(O:(niters-1))"))) -* (2/pi), z_NT); % Normalized
AnGain = prod(sqrt(1+2.~(-2*(0:(niters-1))))); % CORDIC gain

inv_An = 1 / AnGain; % 1/A _n inverse of CORDIC gain

for idx = 1:length(theta)
% CORDIC rotation kernel iterations
[x_out(idx), y out(idx), z_out(idx)] = ...
fidemo.cordic_rotation_kernel (...
Ffi(inv_An, xyNT), Fi(0, xyNT), theta(idx), inpLUT, niters);
end

% Plot the CORDIC-approximated sine and cosine values

figure;

subplot(411);

plot(thNorm, x_ out);

axis([-1 1 -1 1]);

title("Normalized X Values from CORDIC Rotation Kernel lterations®);
subplot(412);

thetaRadians = pi/2 .* thNorm; % real-world range [-pi/2 pi/2] angle values
plot(thNorm, cos(thetaRadians) - double(x_out));

title("Error between MATLAB COS Reference Values and X Values®);
subplot(413);

plot(thNorm, y out);

axis([-1 1 -1 1]);
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title("Normalized Y Values from CORDIC Rotation Kernel lterations®);

subplot(414);
plot(thNorm, sin(thetaRadians) - double(y_out));
title("Error between MATLAB SIN Reference Values and Y Values®);

MNormalized X Values from CORDIC Rotation Kernel lterations

-1 08 06 -04 02 0 02 04 06 08 1
;qur between MATLAB COS Reference Values and X Values

o M*WWW‘”"WW’MM
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_1 PR I : 1 i i i

-1 08 06 04 02 0 02 04 06 08 1
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5
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Perform QR Factorization Using CORDIC

This example shows how to write MATLAB® code that works for both floating-point
and fixed-point data types. The algorithm used in this example is the QR factorization
implemented via CORDIC (Coordinate Rotation Digital Computer).

A good way to write an algorithm intended for a fixed-point target is to write it in
MATLAB using builtin floating-point types so you can verify that the algorithm works.
When you refine the algorithm to work with fixed-point types, then the best thing to do is
to write it so that the same code continues working with floating-point. That way, when
you are debugging, then you can switch the inputs back and forth between floating-point
and fixed-point types to determine if a difference in behavior is because of fixed-point
effects such as overflow and quantization versus an algorithmic difference. Even if the
algorithm is not well suited for a floating-point target (as is the case of using CORDIC

in the following example), it is still advantageous to have your MATLAB code work with
floating-point for debugging purposes.

In contrast, you may have a completely different strategy if your target is floating
point. For example, the QR algorithm is often done in floating-point with Householder
transformations and row or column pivoting. But in fixed-point it is often more efficient
to use CORDIC to apply Givens rotations with no pivoting.

This example addresses the first case, where your target is fixed-point, and you want an
algorithm that is independent of data type because it is easier to develop and debug.

In this example you will learn various coding methods that can be applied across
systems. The significant design patterns used in this example are the following:

+ Data Type Independence: the algorithm is written in such a way that the MATLAB
code is independent of data type, and will work equally well for fixed-point, double-
precision floating-point, and single-precision floating-point.

+ Overflow Prevention: method to guarantee not to overflow. This demonstrates how to
prevent overflows in fixed-point.

+  Solving Systems of Equations: method to use computational efficiency. Narrow your
code scope by isolating what you need to define.

The main part in this example is an implementation of the QR factorization in fixed-
point arithmetic using CORDIC for the Givens rotations. The algorithm is written in
such a way that the MATLAB code is independent of data type, and will work equally
well for fixed-point, double-precision floating-point, and single-precision floating-point.
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The QR factorization of M-by-N matrix A produces an M-by-N upper triangular matrix R
and an M-by-M orthogonal matrix Q such that A = Q*R. A matrix is upper triangular if
it has all zeros below the diagonal. An M-by-M matrix Q is orthogonal if Q**Q = eye (M),
the identity matrix.

The QR factorization is widely used in least-squares problems, such as the recursive least
squares (RLS) algorithm used in adaptive filters.

The CORDIC algorithm is attractive for computing the QR algorithm in fixed-point
because you can apply orthogonal Givens rotations with CORDIC using only shift and
add operations.

Setup

So this example does not change your preferences or settings, we store the original state
here, and restore them at the end.

originalFormat = get(0, "format™); format short
originalFipref = get(fipref); reset(fipref);
originalGlobalFimath = fimath; resetglobal fimath;

Defining the CORDIC QR Algorithm

The CORDIC QR algorithm is given in the following MATLAB function, where A is an M-
by-N real matrix, and niter is the number of CORDIC iterations. Output Q is an M-by-
M orthogonal matrix, and R is an M-by-N upper-triangular matrix such that Q*R = A.

function [Q,R] = cordicgr(A,niter)
Kn = inverse_cordic_growth_constant(niter);
[m,n] = size(A);

R =A;

Q = coder.nullcopy(repmat(A(:,1),1,m)); % Declare type and size of Q
Q(:) = eye(m); % Initialize Q

for j=1:n

[RG.j:end),R(i,j:end),Q(:,3).QC,i)] = ...
cordicgivens(R(,j:end),R(i,j:end),Q(:,3),Q(:,i),niter,Kn);
end
end
end

This function was written to be independent of data type. It works equally well with
builtin floating-point types (double and single) and with the fixed-point fi object.
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One of the trickiest aspects of writing data-type independent code is to specify data type
and size for a new variable. In order to preserve data types without having to explicitly
specify them, the output R was set to be the same as input A, like this:

R = A;

In addition to being data-type independent, this function was written in such a way that
MATLAB Coder™ will be able to generate efficient C code from it. In MATLAB, you most
often declare and initialize a variable in one step, like this:

Q = eye(m)

However, Q=eye(m) would always produce Q as a double-precision floating point
variable. If A is fixed-point, then we want Q to be fixed-point; if A is single, then we want
Q to be single; etc.

Hence, you need to declare the type and size of Q in one step, and then initialize it in a
second step. This gives MATLAB Coder the information it needs to create an efficient C
program with the correct types and sizes. In the finished code you initialize output Q to
be an M-by-M identity matrix and the same data type as A, like this:

Q = coder.nullcopy(repmat(A(:,1),1,m)); % Declare type and size of Q
Q(:) = eye(m); % Initialize Q

The coder.nullcopy function declares the size and type of Q without initializing it.

The expansion of the first column of A with repmat won't appear in code generated by
MATLAB; it is only used to specify the size. The repmat function was used instead of
A(:,1:m) because A may have more rows than columns, which will be the case in a
least-squares problem. You have to be sure to always assign values to every element of
an array when you declare it with coder.nul lcopy, because if you don't then you will
have uninitialized memory.

You will notice this pattern of assignment again and again. This is another key enabler of
data-type independent code.

The heart of this function is applying orthogonal Givens rotations in-place to the rows
of R to zero out sub-diagonal elements, thus forming an upper-triangular matrix. The
same rotations are applied in-place to the columns of the identity matrix, thus forming
orthogonal Q. The Givens rotations are applied using the cordicgivens function,

as defined in the next section. The rows of R and columns of Q are used as both input
and output to the cordicgivens function so that the computation is done in-place,
overwriting R and Q.
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[RA.j:end),R(i,j:-end),Q(:,3),Q(:,1)] =
cordicgivens(R(J,j:end),R(i,j:end), Q( ,_]) Q(:,1),niter,Kn);

Defining the CORDIC Givens Rotation

The cordicgivens function applies a Givens rotation by performing CORDIC iterations
to rows Xx=R(J , j :end), y=R(i,j :end) around the angle defined by x(1)=R({,]J)

and y(1)=R(i,J) where i>], thus zeroing out R(i,j). The same rotation is applied to
columnsu = Q(:,j) andv = Q(:, 1), thus forming the orthogonal matrix Q.

function [x,y,u,v] = cordicgivens(x,y,u,Vv,niter,Kn)

it x(1)<0
% Compensation for 3rd and 4th quadrants
x(:) = -x; u(:) = -u;
y(:) = -y; v() = -v;
end
for i=0:niter-1
X0 = x;
uo =
if y(1)<0
% Counter-clockwise rotation

% x and y form R, u and v form Q
x(:) = x - bitsra(y, i); u(:) = u - bitsra(v, i);
y(:) =y + bitsra(x0,i); v(:) v + bitsra(u0,i);

else
% Clockwise rotation
% x and y form R, u and v form Q
x(:) = x + bitsra(y, i); u(:) = u + bitsra(v, i);
y(:) =y - bitsra(x0,i); v(:) = v - bitsra(u0,i);
end
end

% Set y(1) to exactly zero so R will be upper triangular without round off
% showing up in the lower triangle.

y(1) = 0;

% Normalize the CORDIC gain

X(z) = Kn * x; u(:) = Kn * u;

y(:) = Kn *y; v(:) =Kn*v;
end

The advantage of using CORDIC in fixed-point over the standard Givens rotation is
that CORDIC does not use square root or divide operations. Only bit-shifts, addition,
and subtraction are needed in the main loop, and one scalar-vector multiply at the
end to normalize the CORDIC gain. Also, CORDIC rotations work well in pipelined
architectures.
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The bit shifts in each iteration are performed with the bit shift right arithmetic (bitsra)
function instead of bitshift, multiplication by 0.5, or division by 2, because bitsra

+ generates more efficient embedded code,
*  works equally well with positive and negative numbers,
+ works equally well with floating-point, fixed-point and integer types, and

* keeps this code independent of data type.

It is worthwhile to note that there is a difference between sub-scripted assignment
(subsasgn) into a variable a(:) = b versus overwriting a variable a = b. Sub-scripted
assignment into a variable like this

x(z) = x + bitsra(y, 1);

always preserves the type of the left-hand-side argument X. This is the recommended
programming style in fixed-point. For example fixed-point types often grow their word
length in a sum, which is governed by the SumMode property of the fimath object, so that
the right-hand-side x + bitsra(y, i) can have a different data type than x.

If, instead, you overwrite the left-hand-side like this
X = X + bitsra(y, i);

then the left-hand-side x takes on the type of the right-hand-side sum. This programming
style leads to changing the data type of X in fixed-point code, and is discouraged.

Defining the Inverse CORDIC Growth Constant

This function returns the inverse of the CORDIC growth factor after niter iterations.
It is needed because CORDIC rotations grow the values by a factor of approximately
1.6468, depending on the number of iterations, so the gain is normalized in the last step
of cordicgivens by a multiplication by the inverse Kn = 1/1.6468 = 0.60725.

function Kn = inverse_cordic_growth_constant(niter)
Kn = 1/prod(sqrt(1+2.~(-2*(0:double(niter)-1))));

end

Exploring CORDIC Growth as a Function of Number of lterations

The function for CORDIC growth is defined as

growth = prod(sqrt(1+2.~(-2*(0:double(niter)-1))))
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and the inverse is

inverse_growth = 1 _/ growth

Growth is a function of the number of iterations niter, and quickly converges to
approximately 1.6468, and the inverse converges to approximately 0.60725. You can see
in the following table that the difference from one iteration to the next ceases to change
after 27 iterations. This is because the calculation hit the limit of precision in double

floating-point at 27 iterations.

ni

CONOUAWNRERLOM™

0]
=

growth
1.000000000000000
1.414213562373095
1.581138830084190
1.629800601300662
1.642484065752237
1.645688915757255
1.646492278712479
1.646693254273644
1.646743506596901
1.646756070204878
1.646759211139822
1.646759996375617
1.646760192684695
1.646760241761972
1.646760254031292
1.646760257098622
1.646760257865455
1.646760258057163
1.646760258105090
1.646760258117072
1.646760258120067
1.646760258120816
1.646760258121003
1.646760258121050
1.646760258121062
1.646760258121065
1.646760258121065
1.646760258121065
1.646760258121065
1.646760258121065
1.646760258121065
1.646760258121065
1.646760258121065

diff(growth)

0
0.414213562373095
0.166925267711095
0.048661771216473
0.012683464451575
0.003204850005018
0.000803362955224
0.000200975561165
0.000050252323257
0.000012563607978
0.000003140934944
0.000000785235795
0.000000196309077
0.000000049077277
0.000000012269320
0.000000003067330
0.000000000766833
0.000000000191708
0.000000000047927
0.000000000011982
0.000000000002995
0.000000000000749
0.000000000000187
0.000000000000047
0.000000000000012
0.000000000000003
0.000000000000001

cNeoNeoNeoNeoNe)

1./growth
1.000000000000000
0.707106781186547
0.632455532033676
0.613571991077896
0.608833912517752
0.607648256256168
0.607351770141296
0.607277644093526
0.607259112298893
0.607254479332562
0.607253321089875
0.607253031529134
0.607252959138945
0.607252941041397
0.607252936517010
0.607252935385914
0.607252935103139
0.607252935032446
0.607252935014772
0.607252935010354
0.607252935009249
0.607252935008973
0.607252935008904
0.607252935008887
0.607252935008883
0.607252935008882
0.607252935008881
0.607252935008881
0.607252935008881
0.607252935008881
0.607252935008881
0.607252935008881
0.607252935008881

diff(1./growth)

0
-0.292893218813453
-0.074651249152872
-0.018883540955780
-0.004738078560144
-0.001185656261584
-0.000296486114872
-0.000074126047770
-0.000018531794633
-0.000004632966330
-0.000001158242687
-0.000000289560741
-0.000000072390190
-0.000000018097548
-0.000000004524387
-0.000000001131097
-0.000000000282774
-0.000000000070694
-0.000000000017673
-0.000000000004418
-0.000000000001105
-0.000000000000276
-0.000000000000069
-0.000000000000017
-0.000000000000004
-0.000000000000001
-0.000000000000000
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Comparing CORDIC to the Standard Givens Rotation

The cordicgivens function is numerically equivalent to the following standard Givens
rotation algorithm from Golub & Van Loan, Matrix Computations. In the cordicqr
function, if you replace the call to cordicgivens with a call to givensrotation, then
you will have the standard Givens QR algorithm.

function [x,y,u,v] = givensrotation(x,y,u,Vv)
a=x(@); b =y);
if b==0
% No rotation necessary. c = 1; s = 0;
return;
else
if abs(b) > abs(a)

t = -a/b; s = 1/sqrt(1+t"2); c = s*t;
else
t = -b/a; ¢ = 1/sqrt(1+t"2); s = c*t;
end
end
X0 = Xx; uo = u;
% x and y form R, u and v form Q

c*u0 - s*v;
s*u0 + c*v;

x(z) = c*x0 - s*y; u(:)
y(:) = s*x0 + c*y; v(3)
end

The givensrotation function uses division and square root, which are expensive in
fixed-point, but good for floating-point algorithms.

Example of CORDIC Rotations

Here 1s a 3-by-3 example that follows the CORDIC rotations through each step of the
algorithm. The algorithm uses orthogonal rotations to zero out the subdiagonal elements
of R using the diagonal elements as pivots. The same rotations are applied to the identity
matrix, thus producing orthogonal Q such that Q*R = A.

Let A be a random 3-by-3 matrix, and initialize R = A, and Q = eye(3).

R=A=[-0.8201 0.3573 -0.0100
-0.7766 -0.0096 -0.7048
-0.7274 -0.6206 -0.8901]

Q=[1 0 0

0 1 0

0 0 1]
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The first rotation is about the first and second row of R and the first and second column
of Q. Element R(1,1) is the pivot and R(2,1) rotates to 0.

R before the first rotation
x [-0.8201 0.3573 -0.0100]
y [-0.7766 -0.0096 -0.7048]

-0.7274 -0.6206 -0.8901

Q before the first rotation

u \Y;

[1]1 [0] 0

[0] [1] 0

[0] [0] 1

[_
[_
L

Q
u
0.
0.

after the

.1294  -0.

0 0.

.7274 -0.

after the

\Y;
7261] [ O.
6876] [-O.

oL

first rotation
2528 0.4918]
2527 0.5049]
6206 -0.8901

first rotation
6876]

0
7261] 0
0] 1

In the following plot, you can see the growth in x in each of the CORDIC iterations. The
growth is factored out at the last step by multiplying it by Kn =
that y(1) iterates to 0. Initially, the point [x(1), y(1)] is in the third quadrant, and
is reflected into the first quadrant before the start of the CORDIC iterations.

0.60725. You can see
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o5 CORDIGC rotatons about BT, RE, 1)
- T T T T T

R 1 T S -
L -
_25 1 1 1 1 1
-2 -1 0 1 2
A1

The second rotation is about the first and third row of R and the first and third column of
Q. Element R(1,1) is the pivot and R(3,1) rotates to 0.

R before the second rotation R after the second rotation
X [1.1294 -0.2528 0.4918] -> x [1.3434 0.1235 0.8954]
0 0.2527 0.5049 0 0.2527 0.5049
y [-0.7274] -0.6206 -0.8901 -> v [ 0 -0.6586 -0.4820]
Q before the second rotation Q after the second rotation

u \Y; u \Y;
[-0.7261] 0.6876 [0] [-0.6105] 0.6876 [-0.3932]
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[-0.6876] -0.7261 [0] > [-0.5781] -0.7261 [-0.3723]
[ 0] 0 [1] [-0.5415] 0 [ 0.8407]

CORDIC rotatons about R1,1), B3, 1)

25 ,

G L ..................................... ]
) O TR ORI ..................................... ]
_25 | | | | |
-2 -1 0 1 2
A1)

The third rotation is about the second and third row of R and the second and third
column of Q. Element R(2,2) is the pivot and R(3,2) rotates to 0.

R before the third rotation R after the third rotation
1.3434 0.1235 0.8954 1.3434 0.1235 0.8954
X 0 [ 0.2527 0.5049] -> X 0 [0.7054 0.6308]
y 0 [-0.6586 -0.4820] -> y 0 L 0 0.2987]
Q before the third rotation Q after the third rotation
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u \"
-0.6105 [ 0.6876] [-0.3932]
-0.5781 [-0.7261] [-0.3723] ->
-0.5415 [ 0] [ 0.8407]

u \YJ
-0.6105 [ 0.6134] [ 0.5011]
-0.5781 [ 0.0875] [-0.8113]
-0.5415 [-0.7849] [ 0.3011]

CORDIC rotafions about R(2.2), A3, 2)

23 ! ! !

T O o A T N |
| S S S SRR S i
el ; ; . .
-2 -1 0 1 2
X(1)

This completes the QR factorization. R is upper triangular, and Q is orthogonal.

R =
1.3434 0.1235 0.8954
0 0.7054 0.6308
0 0 0.2987
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Q:
-0.6105 0.6134 0.5011
-0.5781 0.0875 -0.8113
-0.5415 -0.7849 0.3011

You can verify that Q is within roundoff error of being orthogonal by multiplying and
seeing that it is close to the identity matrix.

Q*Q" = 1.0000 0.0000 0.0000
0.0000 1.0000 0
0.0000 0 1.0000
Q"*Q = .0000 0.0000 -0.0000

1
0.0000 1.0000 -0.0000
0.0000 -0.0000 1.0000

You can see the error difference by subtracting the identity matrix.

Q*Q" - eye(size(Q)) = 0 2.7756e-16 3.0531e-16
2.7756e-16  4.4409e-16 0]
3.0531e-16 0 6.6613e-16

You can verify that Q*R is close to A by subtracting to see the error difference.

Q*R - A = -3.7802e-11 -7.2325e-13 -2.7756e-17
-3.0512e-10 1.1708e-12 -4.4409e-16
3.6836e-10 -4.3487e-13 -7.7716e-16

Determining the Optimal Output Type of Q for Fixed Word Length

Since Q is orthogonal, you know that all of its values are between -1 and +1. In floating-
point, there is no decision about the type of Q: it should be the same floating-point type
as A. However, in fixed-point, you can do better than making Q have the identical fixed-
point type as A. For example, if A has word length 16 and fraction length 8, and if we
make Q also have word length 16 and fraction length 8, then you force Q to be less
accurate than it could be and waste the upper half of the fixed-point range.

The best type for Q is to make it have full range of its possible outputs, plus
accommodate the 1.6468 CORDIC growth factor in intermediate calculations. Therefore,
assuming that the word length of Q is the same as the word length of input A, then the
best fraction length for Q is 2 bits less than the word length (one bit for 1.6468 and one
bit for the sign).

Hence, our initialization of Q in cordicqr can be improved like this.
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if isfi(A) && (isfixed(A) || isscaleddouble(A))
Q = Fi(one*eye(m), get(A,"NumericType®), ...
"FractionLength® ,get(A, "WordLength®)-2);
else
Q = coder_nullcopy(repmat(A(:,1),1,m));
Q(:) = eye(m);

end

A slight disadvantage is that this section of code is dependent on data type. However,
you gain a major advantage by picking the optimal type for Q, and the main algorithm is
still independent of data type. You can do this kind of input parsing in the beginning of a
function and leave the main algorithm data-type independent.

Preventing Overflow in Fixed Point R

This section describes how to determine a fixed-point output type for R in order to
prevent overflow. In order to pick an output type, you need to know how much the
magnitude of the values of R will grow.

Given real matrix A and its QR factorization computed by Givens rotations without
pivoting, an upper-bound on the magnitude of the elements of R is the square-root of the
number of rows of A times the magnitude of the largest element in A. Furthermore, this
growth will never be greater during an intermediate computation. In other words, let
[m,n]=size(A), and [Q,R]=givensqgr(A). Then

max(abs(R(:))) <= sqrt(m) * max(abs(A(:)))-

This is true because the each element of R is formed from orthogonal rotations from its
corresponding column in A, so the largest that any element R(i, J) can get is if all of
the elements of its corresponding column A(:, J) were rotated to a single value. In other
words, the largest possible value will be bounded by the 2-norm of A(:,J). Since the 2-
norm of A(:,J) is equal to the square-root of the sum of the squares of the m elements,
and each element is less-than-or-equal-to the largest element of A, then

norm(A(:,J)) <= sqrt(m) * max(abs(A(:)))-

That is, for all j

sqrt(A(1,§)"2 + A(2,J)"2 + ... + A(M,j)"2)
<= sqrt( m * max(abs(A(:)))"2)
= sqrt(m) * max(abs(A(:))).

norm(A(:,1))

and so for all 1,
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abs(R(i,J)) <= norm(A(:,]J)) <= sqrt(m) * max(abs(A(:)))-
Hence, it is also true for the largest element of R
max(abs(R(:))) <= sgrt(m) * max(abs(A(:)))-

This becomes useful in fixed-point where the elements of A are often very close to the
maximum value attainable by the data type, so we can set a tight upper bound without
knowing the values of A. This is important because we want to set an output type for R
with a minimum number of bits, only knowing the upper bound of the data type of A. You
can use fi method upperbound to get this value.

Therefore, for all 1,j

abs(R(i,J)) <= sgrt(m) * upperbound(A)

Note that sqrt(m)*upperbound(A) is also an upper bound for the elements of A:
abs(A(i,J)) <= upperbound(A) <= sqrt(m)*upperbound(A)

Therefore, when picking fixed-point data types, sqrt(m)*upperbound(A) is an upper
bound that will work for both A and R.

Attaining the maximum is easy and common. The maximum will occur when all elements
get rotated into a single element, like the following matrix with orthogonal columns:

A=1[7 -7 7 7
7 7 -7 7
7 -7 -1 -7
7 7 7 -71:

Its maximum value is 7 and its number of rows is m=4, so we expect that the maximum
value in R will be bounded by max(abs(A(:)))*sqrt(m) = 7*sqrt(4) = 14. Since
A in this example is orthogonal, each column gets rotated to the max value on the
diagonal.

niter = 52;
[Q,R] = cordicqr(A,niter)
Q:

0.5000 -0.5000 0.5000 0.5000
0.5000 0.5000 -0.5000 0.5000
0.5000 -0.5000 -0.5000 -0.5000
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0.5000 0.5000 0.5000 -0.5000

14.0000 0.0000 -0.0000 -0.0000
0 14.0000 -0.0000 0.0000
0 0 14.0000 0.0000
0 0 0 14.0000

Another simple example of attaining maximum growth is a matrix that has all identical
elements, like a matrix of all ones. A matrix of ones will get rotated into 1*sqrt(m)

in the first row and zeros elsewhere. For example, this 9-by-5 matrix will have all
1*sqrt(9)=3 in the first row of R.

m=9; n=5;
A = ones(m,n)
niter = 52;

[Q.R] = cordicqr(A,niter)

A =
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Q:

Columns 1 through 7

0.3333 0.5567 -0.6784 0.3035 -0.1237 0.0503 0.0158
0.3333 0.0296 .2498 -0.1702 -0.6336 0.1229 -0.3012
0.3333 0.2401 -0562 -0.3918 0.4927 0.2048 -0.5395
0.3333 0.0003 -0952 -0.1857 0.2148 0.4923 0.7080
0.3333 0.1138 -0664 -0.2263 0.1293 -0.8348 0.2510
0.3333 -0.3973 -0.0143 0.3271 0.4132 -0.0354 -0.2165

eNeoNoNoNe)
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0.3333 0.1808 0.3538 -0.1012 -0.2195 0 0.0824
0.3333 -0.6500 -0.4688 -0.2380 -0.2400 0 0
0.3333 -0.0740 0.3400 0.6825 -0.0331 0 0

Columns 8 through 9

0.0056 -0.0921
-0.5069 -0.1799
0.0359 0.3122
-0.2351 -0.0175
-0.2001 0.0610
-0.0939 -0.6294
0.7646 -0.2849
0.2300 0.2820

0 0.5485

w
o
o
o
o
w

-0000 3.0000 3.0000 3.0000
0.0000 0.0000 0.0000 0.0000

0 0 0.0000 0.0000 0.0000
0 0 0 0.0000 0.0000
0 0 0 0 0.0000
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

As in the cordicqgr function, the Givens QR algorithm is often written by overwriting
A in-place with R, so being able to cast A into R's data type at the beginning of the
algorithm is convenient.

In addition, if you compute the Givens rotations with CORDIC, there is a growth-factor
that converges quickly to approximately 1.6468. This growth factor gets normalized

out after each Givens rotation, but you need to accommodate it in the intermediate
calculations. Therefore, the number of additional bits that are required including the
Givens and CORDIC growth are 10g2(1.6468* sqrt(m)). The additional bits of
head-room can be added either by increasing the word length, or decreasing the fraction
length.

A benefit of increasing the word length is that it allows for the maximum possible
precision for a given word length. A disadvantage is that the optimal word length may
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not correspond to a native type on your processor (e.g. increasing from 16 to 18 bits), or
you may have to increase to the next larger native word size which could be quite large
(e.g. increasing from 16 to 32 bits, when you only needed 18).

A benefit of decreasing fraction length is that you can do the computation in-place in the
native word size of A. A disadvantage is that you lose precision.

Another option is to pre-scale the input by right-shifting. This is equivalent to decreasing
the fraction length, with the additional disadvantage of changing the scaling of your
problem. However, this may be an attractive option to you if you prefer to only work in
fractional arithmetic or integer arithmetic.

Example of Fixed Point Growth in R

If you have a fixed-point input matrix A, you can define fixed-point output R with the
growth defined in the previous section.

Start with a random matrix X.

X = [0.0513 -0.2097 0.9492 0.2614
0.8261 0.6252 0.3071  -0.9415
1.5270 0.1832 0.1352 -0.1623
0.4669 -1.0298 0.5152  -0.1461];

Create a fixed-point A from X.
A

sFi(X)

0.0513 -0.2097 0.9492 0.2614
0.8261 0.6252 0.3071 -0.9415
1.5270 0.1832 0.1352 -0.1623
0.4669 -1.0298 0.5152 -0.1461

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 14

m = size(A,1)
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The growth factor is 1.6468 times the square-root of the number of rows of A. The bit
growth is the next integer above the base-2 logarithm of the growth.

bit_growth = ceil(log2(cordic_growth_constant * sqrt(m)))

bit _growth =

2

Initialize R with the same values as A, and a word length increased by the bit growth.

R = sFi(A, get(A, "WordLength®)+bit_growth, get(A, "FractionLength®))

0.0513 -0.2097
0.8261 0.6252
1.5270 0.1832
0.4669 -1.0298

DataTypeMode:
Signedness:
WordLength:

FractionLength:

0.9492 0.2614
0.3071 -0.9415
0.1352 -0.1623
0.5152 -0.1461

Fixed-point: binary point scaling
Signed

18

14

Use R as input and overwrite it.

niter = get(R, "WordLength®) - 1
[Q,R] = cordicqr(R, niter)
niter =

17
Q =
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0.0284 -0.1753 0.9110 0.
0.4594 0.4470 0.3507 -0.
0.8490 0.0320 -0.2169 0.
0.2596 -0.8766 -0.0112 -0.

DataTypeMode: Fixed-point:

Signedness: Signed
WordLength: 18
FractionLength: 16

1.7989 0.1694 0.4166 -0.
0 1.2251 -0.4764 -0.
0 0 0.9375 -0.
0 0 0 0.

DataTypeMode: Fixed-point:

Signedness: Signed
WordLength: 18
FractionLength: 14

3723
6828
4808
4050

binary point scaling

6008
3438
0555
7214

binary point scaling

Verify that Q*Q" is near the identity matrix.

double(Q)*double(Q™)

ans =

1.0000 -0.0001 0.0000 0.
-0.0001 1.0001 0.0000 -0.
0.0000 0.0000 1.0000 -0.
0.0000 -0.0000 -0.0000 1.

0000
0000
0000
0000

Verify that Q*R - A is small relative to the precision of A.

err

err

1.0e-03 *

-0.1048 -0.2355 0.1829 -0.

double(Q)*double(R) - double(Ah)

2146
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0.3472 0.2949 0.0260 -0.2570
0.2776 -0.1740 -0.1007 0.0966
0.0138 -0.1558 0.0417 -0.0362

Increasing Precision in R

The previous section showed you how to prevent overflow in R while maintaining the
precision of A. If you leave the fraction length of R the same as A, then R cannot have
more precision than A, and your precision requirements may be such that the precision of
R must be greater.

An extreme example of this is to define a matrix with an integer fixed-point type (i.e.
fraction length is zero). Let matrix X have elements that are the full range for signed 8
bit integers, between -128 and +127.

X = [-128 -128 -128 127
-128 127 127 -128
127 127 127 127
127 127 -128 -128];

Define fixed-point A to be equivalent to an 8-bit integer.

A = sfi(X,8,0)
A =
-128 -128 -128 127
-128 127 127 -128
127 127 127 127
127 127 -128 -128
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: O
m = size(A,1)
m =
4
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The necessary growth is 1.6468 times the square-root of the number of rows of A.

bit_growth = ceil(log2(cordic_growth_constant*sqrt(m)))

bit_growth

2

Initialize R with the same values as A, and allow for bit growth like you did in the
previous section.

R sFi(A, get(A, "WordLength®)+bit_growth, get(A, "FractionLength®))

-128 -128 -128 127
-128 127 127 -128
127 127 127 127
127 127 -128 -128

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 10
FractionLength: 0O

Compute the QR factorization, overwriting R.

niter = get(R, "WordLength®) - 1;
[Q.R] = cordicqr(R, niter)
Q =

-0.5039 -0.2930 -0.4063 -0.6914
-0.5039 0.8750 0.0039 0.0078
0.5000 0.2930 0.3984 -0.7148
0.4922 0.2930 -0.8203 0.0039

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 10
FractionLength: 8
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R =

257 126 -1 -1

0 225 151 -148

0 0 211 104

0 0 0 -180

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 10
FractionLength: 0O

Notice that R is returned with integer values because you left the fraction length of R at
0, the same as the fraction length of A.

The scaling of the least-significant bit (LSB) of A is 1, and you can see that the error is

proportional to the LSB.

err = double(Q)*double

err

-1.5039 -1.4102
-1.5039 6.3828
1.5000 1.9180
-0.5078 0.9336

(R)-double(A)

-1.4531 -0.9336
6.4531 -1.9961
0.8086 -0.7500

-1.3398 -1.8672

You can increase the precision in the QR factorization by increasing the fraction length.
In this example, you needed 10 bits for the integer part (8 bits to start with, plus 2 bits
growth), so when you increase the fraction length you still need to keep the 10 bits in the
integer part. For example, you can increase the word length to 32 and set the fraction

length to 22, which leaves
R

sfi(A, 32, 22)

10 bits in the integer part.

-128 -128 -128 127
-128 127 127 -128
127 127 127 127
127 127 -128 -128
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DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 22

niter = get(R, "WordLength®) - 1;
[Q,R] = cordicqr(R, niter)
Q:

-0.5020 -0.2913 -0.4088 -0.7043
-0.5020 0.8649 0.0000 0.0000
0.4980 0.2890 0.4056 -0.7099
0.4980 0.2890 -0.8176 0.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 30

255.0020 127.0029 0.0039 0.0039
0 220.5476 146.8413 -147.9930
0 0 208.4793 104.2429
0 0 0 -179.6037

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 22

Now you can see fractional parts in R, and Q*R-A is small.

err = double(Q)*double(R)-double(A)

err
1.0e-05 *

-0.1234 -0.0014 -0.0845 0.0267
-0.1234 0.2574 0.1260 -0.1094
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0.0720 0.0289 -0.0400 -0.0684
0.0957 0.0818 -0.1034 0.0095

The number of bits you choose for fraction length will depend on the precision
requirements for your particular algorithm.

Picking Default Number of lterations

The number of iterations is dependent on the desired precision, but limited by the word
length of A. With each iteration, the values are right-shifted one bit. After the last bit
gets shifted off and the value becomes 0, then there is no additional value in continuing
to rotate. Hence, the most precision will be attained by choosing niter to be one less
than the word length.

For floating-point, the number of iterations is bounded by the size of the mantissa. In
double, 52 iterations is the most you can do to continue adding to something with the
same exponent. In single, it is 23. See the reference page for eps for more information
about floating-point accuracy.

Thus, we can make our code more usable by not requiring the number of iterations to be
input, and assuming that we want the most precision possible by changing cordicqr to
use this default for niter.

function [Q,R] = cordicqr(A,varargin)
if nargin>=2 && ~isempty(varargin{l})
niter = varargin{l};
elseif isa(A, “double®) || isfi(A) && isdouble(A)
niter = 52;
elseif isa(A,"single”) || isfi(A) && issingle(A)
niter = single(23);
elseif isfi(A)
niter = int32(get(A, "WordLength®) - 1);
else
assert(0, "First input must be double, single, or fi.");
end

A disadvantage of doing this is that this makes a section of our code dependent on data
type. However, an advantage is that the function is much more convenient to use because
you don't have to specify niter if you don't want to, and the main algorithm is still data-
type independent. Similar to picking an optimal output type for Q, you can do this kind
of input parsing in the beginning of a function and leave the main algorithm data-type
independent.



Perform QR Factorization Using CORDIC

Here is an example from a previous section, without needing to specify an optimal niter.

A=[7 -7 7 7
7 7 -7 7
7 -7 -7 -7
7 7 7 -71:

[Q,R] = cordicqr(A)

Q:
0.5000 -0.5000 0.5000 0.5000
0.5000 0.5000 -0.5000 0.5000
0.5000 -0.5000 -0.5000 -0.5000
0.5000 0.5000 0.5000 -0.5000
R =

14.0000 0.0000 -0.0000 -0.0000
0 14.0000 -0.0000 0.0000
0 0 14.0000 0.0000
0 0 0 14.0000

Example: QR Factorization Not Unique

When you compare the results from cordicqr and the QR function in MATLAB, you will
notice that the QR factorization is not unique. It is only important that Q is orthogonal, R
is upper triangular, and Q*R - A is small.

Here is a simple example that shows the difference.

m = 3;

A = ones(m)

A =
1 1 1
1 1 1
1 1 1

The built-in QR function in MATLAB uses a different algorithm and produces:
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[Q0,R0] = ar(A)

Q0 =
-0.5774 -0.5774 -0.5774
-0.5774 0.7887 -0.2113
-0.5774 -0.2113 0.7887
RO =

-1.7321 -1.7321 -1.7321
0 0 0
0 0 0

And the cordicqgr function produces:

[Q,R] = cordicqr(A)

Q:
0.5774 0.7495 0.3240
0.5774 -0.6553 0.4871
0.5774 -0.0942 -0.8110
R =

1.7321 1.7321 1.7321
0 0.0000 0.0000
0 0 -0.0000

Notice that the elements of Q from function cordicqr are different from QO from built-
in QR. However, both results satisfy the requirement that Q is orthogonal:

Q0*Q0*

ans =

1.0000 0.0000 0
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0.0000

Q*Q*

ans =

1.0000
0.0000
0.0000

1.0000

0.0000
1.0000
-0.0000

1.0000

0.0000
-0.0000
1.0000

And they both satisfy the requirement that Q*R - A is small:

QO*RO - A

ans =

1.0e-15 *

-0.1110
-0.1110
-0.1110

Q*R - A

ans =
1.0e-15
-0.2220

0.4441
0.2220

Solving Systems of Equations Without Forming Q

-0.1110
-0.1110
-0.1110

0.2220
0
0.2220

-0.1110
-0.1110
-0.1110

0.2220
0
0.2220

Given matrices A and B, you can use the QR factorization to solve for X in the following

equation:

A*X = B.

3-125



3 Fixed-Point Topics

3-126

If A has more rows than columns, then X will be the least-squares solution. If X and B
have more than one column, then several solutions can be computed at the same time. If
A = Q*Ris the QR factorization of A, then the solution can be computed by back-solving

R*X = C

where C = Q"*B. Instead of forming Q and multiplying to get C = Q"*B, it is more
efficient to compute C directly. You can compute C directly by applying the rotations

to the rows of B instead of to the columns of an identity matrix. The new algorithm is
formed by the small modification of initializing C = B, and operating along the rows of C
instead of the columns of Q.

function [R,C] = cordicrc(A,B,niter)
Kn = iInverse_cordic_growth_constant(niter);
[m,n] = size(A);

R = A;

C = B;

for j=1:n
for i=j+1:m

[RQ.J:end),R(i,j:end),CU,:),C(1,:)] =
cordicgivens(R(J,j:end),R(i,j:end), C(J 2),C(i, ) ,niter,Kn);

end

end

end

You can verify the algorithm with this example. Let A be a random 3-by-3 matrix, and B
be a random 3-by-2 matrix.

A = [-0.8201 0.3573 -0.0100
-0.7766 -0.0096 -0.7048
-0.7274 -0.6206 -0.8901];

-9286 0.3575

0
0.6983 0.5155
0.8680 0.4863];

Compute the QR factorization of A.

[Q,R] = cordicqr(A)

-0.6105 0.6133 0.5012
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-0.5781
-0.5415

0.0876
-0.7850

0.1235
0.7054
0

-0.8113
0.3011

0.8955
0.6309
0.2988

Compute C = Q"*B directly.

[R,C] = cordicrc(A,B)

1.3434

-0.3068
-1.1897
-0.7706

0.1235
0.7054
0

-0.7795
-0.1173
-0.0926

0.8955
0.6309
0.2988

Subtract, and you will see that the error difference is on the order of roundoff.

Q"*B - C

ans =
1.0e-15 *
-0.0555

0
0.1110

0.3331
0
0.2914

Now try the example in fixed-point. Declare A and B to be fixed-point types.
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A = sFi(h)
A =
-0.8201 0.3573
-0.7766 -0.0096
-0.7274 -0.6206
DataTypeMode:
Signedness:
WordLength:
FractionLength:
B = sfi(B)
B =

-0.9286 0.3575
0.6983 0.5155
0.8680 0.4863

DataTypeMode:
Signedness:
WordLength:

FractionLength:

-0.0100
-0.7048
-0.8901

Fixed-point: binary point scaling
Signed

16

15

Fixed-point: binary point scaling
Signed

16

15

The necessary growth is 1.6468 times the square-root of the number of rows of A.

bit_growth = ceil(log2(cordic_growth_constant*sqrt(m)))

bit_growth

2

Initialize R with the same values as A, and allow for bit growth.

R = sTi(A, get(A, "WordLength")+bit _growth, get(A, "FractionLength®))

R =

-0.8201 0.3573

-0.0100
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-0.7766 -0.0096 -0.7048
-0.7274 -0.6206 -0.8901

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18
FractionLength: 15

The growth in C is the same as R, so initialize C and allow for bit growth the same way.

C sFfi(B, get(B, "WordLength")+bit_growth, get(B, "FractionLength®))

-0.9286 0.3575
0.6983 0.5155
0.8680 0.4863

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18
FractionLength: 15

Compute C = Q'*B directly, overwriting R and C.

[R,C] = cordicrc(R,C)

R =

1.3435 0.1233 0.8954
0 0.7055 0.6308
0 0 0.2988

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18
FractionLength: 15

C =
-0.3068 -0.7796

-1.1898 -0.1175
-0.7706 -0.0926
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DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 18
FractionLength: 15

An interesting use of this algorithm is that if you initialize B to be the identity matrix,
then output argument C is Q'. You may want to use this feature to have more control
over the data type of Q. For example,

A = [-0.8201 0.3573 -0.0100
-0.7766 -0.0096 -0.7048
-0.7274 -0.6206 -0.8901];

B = eye(size(A,1))

B =
1 0 0
0 1 0
0 0 1

[R,C] = cordicrc(A,B)

R =
1.3434 0.1235 0.8955
0 0.7054 0.6309
0 0 0.2988

C =

-0.6105 -0.5781 -0.5415
0.6133 0.0876 -0.7850
0.5012 -0.8113 0.3011

Then C is orthogonal

C=*C
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ans =
1.0000 0.0000 0.0000
0.0000 1.0000 -0.0000
0.0000 -0.0000 1.0000
and R = C*A
R - C*A
ans =
1.0e-15 *

0.6661 -0.0139 -0.1110
0.5551 -0.2220 0.6661
-0.2220 -0.1110 0.2776

Links to the Documentation
Fixed-Point Designer™

* Ditsra Bit shift right arithmetic

+ fi Construct fixed-point numeric object

+ fimath Construct Fimath object

+ fipref Construct Fipref object

+ get Property values of object

+ globalfimath Configure global Fimath and return handle object
+ 1isfi Determine whether variable is i object

+ sfi Construct signed fixed-point numeric object

+ upperbound Upper bound of range of i object

+ fiaccel Accelerate fixed-point code
MATLAB

+ bitshift Shift bits specified number of places

+ ceil Round toward positive infinity
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double Convert to double precision floating point

eps Floating-point relative accuracy

eye Identity matrix

log2 Base 2 logarithm and dissect floating-point numbers into exponent and mantissa
prod Product of array elements

qr Orthogonal-triangular factorization

repmat Replicate and tile array

single Convert to single precision floating point

size Array dimensions

sqrt Square root

subsasgn Subscripted assignment

Functions Used in this Example

These are the MATLAB functions used in this example.

CORDICQR computes the QR factorization using CORDIC.

[Q.R] = cordicqr(A) chooses the number of CORDIC iterations based on the type
of A.
[Q.,R] = cordicgr(A,niter) uses niter number of CORDIC iterations.

CORDICRC computes R from the QR factorization of A, and also returns C = Q"*B
without computing Q.

[R,C] = cordicrc(A,B) chooses the number of CORDIC iterations based on the
type of A.

[R,C] = cordicrc(A,B,niter) uses niter number of CORDIC iterations.

CORDIC_GROWTH_CONSTANT returns the CORDIC growth constant.

cordic_growth = cordic_growth_constant(niter) returns the CORDIC
growth constant as a function of the number of CORDIC iterations, niter.

GIVENSQR computes the QR factorization using standard Givens rotations.

[Q,R] = givensgr(A), where A is M-by-N, produces an M-by-N upper triangular
matrix R and an M-by-M orthogonal matrix Q so that A = Q*R.
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CORDICQR_MAKEPLOTS makes the plots in this example by executing the following
from the MATLAB command line.

load A_3 by 3 for_cordicqr_demo.mat
niter=32;
[Q.R] = cordicqr_makeplots(A,niter)
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Cleanup

Ffipref(originalFipref);
globalfimath(originalGlobalFimath);
close all

set(0, “format®, originalFormat);
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This example shows how to compute square root using a CORDIC kernel algorithm in
MATLAB®. CORDIC-based algorithms are critical to many embedded applications,
including motor controls, navigation, signal processing, and wireless communications.

Introduction

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens
rotation-based CORDIC algorithm (see [1,2]) is one of the most hardware efficient
algorithms because it only requires iterative shift-add operations. The CORDIC
algorithm eliminates the need for explicit multipliers, and is suitable for calculating
a variety of functions, such as sine, cosine, arcsine, arccosine, arctangent, vector
magnitude, divide, square root, hyperbolic and logarithmic functions.

The fixed-point CORDIC algorithm requires the following operations:

+ 1 table lookup per iteration
+ 2 shifts per iteration

+ 3 additions per iteration

Note that for hyperbolic CORDIC-based algorithms, such as square root, certain
iterations (i = 4, 13, 40, 121, ..., k, 3k+1, ...) are repeated to achieve result convergence.

CORDIC Kernel Algorithms Using Hyperbolic Computation Modes

You can use a CORDIC computing mode algorithm to calculate hyperbolic functions, such
as hyperbolic trigonometric, square root, log, exp, etc.

CORDIC EQUATIONS IN HYPERBOLIC VECTORING MODE
The hyperbolic vectoring mode is used for computing square root.

For the vectoring mode, the CORDIC equations are as follows:
Tipp =T+ yi*ed; =2 ‘

el = Wi I ”rl' ® 2 !
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Tigl = i — ;i % E'l['E'lIIill:_E I.}
where

d; = +1if i <0 and —1 otherwise.

This mode provides the following result as W approaches +o<:

Ty == An \.fﬁ - i
s yxw =10
* zn = zp + atanh(yg/xo)
where
N-1

Typically N is chosen to be a large-enough constant value. Thus, Ay may be pre-
computed.

Note also that for square root we will use only the ¥ result.
MATLAB Implementation of a CORDIC Hyperbolic Vectoring Algorithm

A MATLAB code implementation example of the CORDIC Hyperbolic Vectoring Kernel
algorithm follows (for the case of scalar X, y, and z). This same code can be used for both
fixed-point and floating-point data types.

CORDIC Hyperbolic Vectoring Kernel
k = 4; % Used for the repeated (3*k + 1) iteration steps

for idx = 1:n
i

xtmp = bitsra(x, i1dx); % multiply by 2~(-idx)
ytmp = bitsra(y, idx); % multiply by 2~(-idx)
ify<o

x(:) = x + ytmp;

y(:) =y + xtmp;
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z(:) = z - atanhLookupTable(idx);
else
x(:) = x - ytmp;
y(:) =y - xtmp;
z(:) = z + atanhLookupTable(idx);
end
if idx==k
xtmp = bitsra(x, idx); % multiply by 2~(-idx)
ytmp = bitsra(y, idx); % multiply by 2~(-idx)
ify<o
x(:) = x + ytmp;
y(:) =y + xtmp;
z(:) = z - atanhLookupTable(idx);
else
x(2) = x - ytmp;
y(:) =y - xtmp;
z(:) = z + atanhLookupTable(idx);
end
k = 3*k + 1;
end

end % idx loop
CORDIC-Based Square Root Computation
Square Root Computation Using the CORDIC Hyperbolic Vectoring Kernel

The judicious choice of initial values allows the CORDIC kernel hyperbolic vectoring
mode algorithm to compute square root.

First, the following initialization steps are performed:

Ty is set to v + .25,

* Wois set to v — 025,

After IV iterations, these initial values lead to the following output as IV approaches +2<:

xn = Ay (v + 0.25)2 — (v — 0.25)2
This may be further simplified as follows:

xy == Anyo
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where A is the CORDIC gain as defined above.

Note: for square root, = and atanhLookupTable have no impact on the result. Hence, =
and atanhLookupTable are not used.

MATLAB Implementation of a CORDIC Square Root Kernel

A MATLAB code implementation example of the CORDIC Square Root Kernel algorithm
follows (for the case of scalar x and y). This same code can be used for both fixed-point
and floating-point data types.

CORDIC Square Root Kernel

k = 4; % Used for the repeated (3*k + 1) iteration steps

for idx = 1:n
itsra(x, 1dx); % multiply by 2~(-idx)

sra(y, idx); % multiply by 2~(-idx)

X + ytmp;
y + Xtmp;

X - ytmp;
y - xXtmp;

it 1dx==k
xtmp
ytmp
ify

bitsra(x, idx); % multiply by 2~(-idx)
bitsra(y, idx); % multiply by 2~(-idx)
0

X + ytmp;

y + xXtmp;

<
x(:
y(:
else
x(:

X - ytmp;
y - xtmp;

)
)
)
y(2)
end
k = 3*k + 1;
end
end % idx loop

This code is identical to the CORDIC Hyperbolic Vectoring Kernel implementation

above, except that z and atanhLookupTable are not used. This is a cost savings of 1
table lookup and 1 addition per iteration.
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Example

Use the CORDICSQRT function to compute the approximate square root of v_FfiX using
ten CORDIC kernel iterations:

step = 2"-7;

v_Tix = Fi(0.5:step:(2-step), 1, 20); % Fixed-point inputs in range [.5, 2)
niter = 10; % number of CORDIC iterations

x_sqr = cordicsqgrt(v_fix, niter);

% Get the Real World Value (RWV) of the CORDIC outputs for comparison

% and plot the error between the MATLAB reference and CORDIC sqgrt values
x_cdc = double(x_sqr); % CORDIC results (scaled by An_hp)

v_ref = double(v_fix); % Reference floating-point input values

x_ref = sqgrt(v_ref); % MATLAB reference floating-point results

figure;

subplot(211);

plot(v_ref, x_cdc, "r.", v_ref, x ref, "b-");

legend("CORDIC", "Reference”, "Location®, "SouthEast");
title("CORDIC Square Root (In-Range) and MATLAB Reference Results™);
subplot(212);

absérr = abs(x_ref - x_cdc);

plot(v_ref, absErr);

title("Absolute Error (vs. MATLAB SQRT Reference Results)®);
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CORDIC Square Root [In-Range] and MATLAB Reference Results
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Overcoming Algorithm Input Range Limitations

Many square root algorithms normalize the input value, v, to within the range of [0.5, 2)
range. This pre-processing is typically done using a fixed word length normalization, and
can be used to support small as well as large input value ranges.

The CORDIC-based square root algorithm implementation is particularly sensitive

to inputs outside of this range. The function CORDICSQRT overcomes this algorithm
range limitation through a normalization approach based on the following mathematical
relationships:

v =u#2" for some (.3 <= u < 2 and some even integer 1.

Thus:
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Vi =4 3"

In the CORDICSQRT function, the values for it and i, described above, are found during
normalization of the input . 1 is the number of leading zero most significant bits (MSBs)
in the binary representation of the input v. These values are found through a series of
bitwise logic and shifts. Note: because m must be even, if the number of leading zero
MSBs is odd, one additional bit shift is made to make m even. The resulting value after
these shifts is the value (L5 <= u < 2

it becomes the input to the CORDIC-based square root kernel, where an approximation to
V1l is calculated. The result is then scaled by 2" * so that it is back in the correct output
range. This is achieved through a simple bit shift by ™ /2 bits. The (left or right) shift
direction dependends on the sign of .

Example

Compute the square root of 10-bit fixed-point input data with a small non-negative range
using CORDIC. Compare the CORDIC-based algorithm results to the floating-point
MATLAB reference results over the same input range.

step = 2"N-8;

u_ref = O:step:(0.5-step); % Input array (small range of values)
u_in_arb = fi(u_ref,0,10); % 10-bit unsigned fixed-point input data values
u_len = numel(u_ref);

sqrt_ref = sqrt(double(u_in_arb)); % MATLAB sqrt reference results

niter = 10;

results = zeros(u_len, 2);

results(:,2) = sqrt_ref(:);

% Compute the equivalent Real World Value result for plotting.

% Plot the Real World Value (RWV) of CORDIC and MATLAB reference results.
x_out = cordicsqgrt(u_in_arb, niter);

results(:,1) = double(x_out);

figure;

subplot(211);

plot(u_ref, results(:,1), "r.", u_ref, results(:,2), "b-");
legend("CORDIC", "Reference®, "Location®, "SouthEast®);

title("CORDIC Square Root (Small Input Range) and MATLAB Reference Results®);
axis([0 0.5 0 0.75]);

subplot(212);

abskrr = abs(results(:,2) - results(:,1));

plot(u_ref, abskrr);

title("Absolute Error (vs. MATLAB SQRT Reference Results)®);



Compute Square Root Using CORDIC

CORDIC Square Root (Small Input Range) and MATLAB Reference Results
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Compute the square root of 16-bit fixed-point input data with a large positive range using
CORDIC. Compare the CORDIC-based algorithm results to the floating-point MATLAB
reference results over the same input range.

u_ref
u_in_arb
u_len
sqrt_ref =
niter =
results =

0:5:2500; % Input array (larger range of values)
Fi(u_ref,0,16); % 16-bit unsigned fixed-point input data values
numel (u_ref);

sqrt(double(u_in_arb)); % MATLAB sqgrt reference results

16;

zeros(u_len, 2);

results(:,2) = sqrt_ref(:);
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% Compute the equivalent Real World Value result for plotting.

% Plot the Real World Value (RWV) of CORDIC and MATLAB reference results.
x_out = cordicsqrt(u_in_arb, niter);

results(:,1) = double(x_out);

figure;

subplot(211);

plot(u_ref, results(:,1), "r.", u_ref, results(:,2), "b-");
legend("CORDIC", "Reference®, "Location®, "SouthEast®);

title("CORDIC Square Root (Large Input Range) and MATLAB Reference Results®);
axis([0 2500 O 55]);

subplot(212);

abskrr = abs(results(:,2) - results(:,1));

plot(u_ref, abskrr);

title("Absolute Error (vs. MATLAB SQRT Reference Results)®);

CORDIC Square Root (Large Input Range) and MATLAB Reference Results
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This example shows how to convert Cartesian to polar coordinates using a CORDIC
vectoring kernel algorithm in MATLAB®. CORDIC-based algorithms are critical to many
embedded applications, including motor controls, navigation, signal processing, and
wireless communications.

Introduction

CORDIC is an acronym for COordinate Rotation DIgital Computer. The Givens
rotation-based CORDIC algorithm (see [1,2]) is one of the most hardware efficient
algorithms because it only requires iterative shift-add operations. The CORDIC
algorithm eliminates the need for explicit multipliers, and is suitable for calculating
a variety of functions, such as sine, cosine, arcsine, arccosine, arctangent, vector
magnitude, divide, square root, hyperbolic and logarithmic functions.

The fixed-point CORDIC algorithm requires the following operations:

* 1 table lookup per iteration
+ 2 shifts per iteration

* 3 additions per iteration
CORDIC Kernel Algorithm Using the Vectoring Computation Mode

You can use a CORDIC vectoring computing mode algorithm to calculate atan(y/x),
compute cartesian-polar to cartesian conversions, and for other operations. In vectoring
mode, the CORDIC rotator rotates the input vector towards the positive X-axis to
minimize the ¥ component of the residual vector. For each iteration, if the ¥ coordinate
of the residual vector is positive, the CORDIC rotator rotates clockwise (using a negative
angle); otherwise, it rotates counter-clockwise (using a positive angle). Each rotation uses
a progressively smaller angle value. If the angle accumulator is initialized to 0, at the
end of the iterations, the accumulated rotation angle is the angle of the original input
vector.

In vectoring mode, the CORDIC equations are:
Tigl = T — Yi*di %2 :

el = Wi I ”rl' ® 2 !
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zigl = 2 +di * atan(27') g the angle accumulator
where @i = +1if i <1 and —1 otherwise;
i=0.1,...N — 1 and N is the total number of iterations.

As N approaches +o ;
9 3
v = Ay V%o + ¥
yv =10

zny = zp + atan(yn/xp)

Typically IV is chosen to be a large-enough constant value. Thus, Ax may be pre-
computed.

Efficient MATLAB Implementation of a CORDIC Vectoring Kernel Algorithm

A MATLAB code implementation example of the CORDIC Vectoring Kernel algorithm
follows (for the case of scalar X, y, and z). This same code can be used for both fixed-point
and floating-point operation.

CORDIC Vectoring Kernel

function [x, y, z] = cordic_vectoring_kernel(x, y, z, inpLUT, n)
% Perform CORDIC vectoring kernel algorithm for N iterations.

xtmp = X;
ytmp = y;
for idx = 1:n
ify<o
x(:) = accumneg(x, ytmp);
y(:) = accumpos(y, xtmp);
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z(:) = accumneg(z, inpLUT(idx));
else
x(:) = accumpos(x, ytmp);
y(:) = accumneg(y, Xtmp);
z(:) = accumpos(z, inpLUT(idx));
end
xtmp bitsra(x, 1dx); % bit-shift-right for multiply by 27(-idx)

ytmp = bitsra(y, idx); % bit-shift-right for multiply by 27(-idx)

end

CORDIC-Based Cartesian to Polar Conversion Using Normalized Input Units

Cartesian to Polar Computation Using the CORDIC Vectoring Kernel

The judicious choice of initial values allows the CORDIC kernel vectoring mode
algorithm to directly compute the magnitude R = 1":'1‘; N H‘L; and angle 0 = atan(yo/xo),
The input accumulators are initialized to the input coordinate values:

e pp=X

c w=Y

The angle accumulator is initialized to zero:

e zp=1)

After IV iterations, these initial values lead to the following outputs as N approaches
gl Y

wox 22 Aar f2, .2
TN = ANV EG T I

* zy == atan(yy/ o)

Other vectoring-kernel-based function approximations are possible via pre- and post-
processing and using other initial conditions (see [1,2]).

Example

Suppose that you have some measurements of Cartesian (X,Y) data, normalized to values
between [-1, 1), that you want to convert into polar (magnitude, angle) coordinates.
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Also suppose that you have a 16-bit integer arithmetic unit that can perform add,
subtract, shift, and memory operations. With such a device, you could implement the
CORDIC vectoring kernel to efficiently compute magnitude and angle from the input
(X,Y) coordinate values, without the use of multiplies or large lookup tables.

sumWL = 16; % CORDIC sum word length

thNorm = -1.0:(27-8):1.0; % Also using normalized [-1.0, 1.0] angle values
theta = fi(thNorm, 1, sumWL); % Fixed-point angle values (best precision)
z NT = numerictype(theta); % Data type for Z

XyCPNT = numerictype(1,16,15); % Using normalized X-Y range [-1.0, 1.0)

thetaRadians = pi/2 .* thNorm; % real-world range [-pi/2 pi/2] angle values

inXfFix = Fi(0.50 .* cos(thetaRadians), XxyCPNT); % X coordinate values
inYfix = Fi(0.25 .* sin(thetaRadians), XyCPNT); % Y coordinate values
niters = 13; % Number of CORDIC iterations

inpLUT = fi(atan(2 .~ (-(O:(niters-1))"))) -* (2/pi), z_NT); % Normalized
z_c2p = Fi(zeros(size(theta)), z NT); % Z array pre-allocation

x_c2p = FTi(zeros(size(theta)), xyCPNT); % X array pre-allocation

y_c2p = FTi(zeros(size(theta)), xyCPNT); % Y array pre-allocation

for idx = 1:length(inXfix)
% CORDIC vectoring kernel iterations
[x_c2p(idx), y _c2p(idx), z_c2p(idx)] = --.
fidemo.cordic_vectoring_kernel (...
inXFix(idx), inYFix(idx), Fi(0, z_NT), InpLUT, niters);
end

% Get the Real World Value (RWV) of the CORDIC outputs for comparison
% and plot the error between the (magnitude, angle) values

AnGain = prod(sgrt(1+2.~(-2*(0:(niters-1))))); % CORDIC gain

X_c2p_RwV = (1/AnGain) .* double(x_c2p); % Magnitude (scaled by CORDIC gain)
Z_c2p_Rwv = (pi/2) -* double(z_c2p); % Angles (in radian units)

[thRW, rRW] = cart2pol (double(inXfix), double(inYfix)); % MATLAB reference
magnitudeErr = rRW - x_c2p_RWV;

angleErr = thRWV - z_c2p_RWV;

figure;

subplot(411);

plot(thNorm, x_c2p_RWV);

axis([-1 1 0.25 0.5]);

title("CORDIC Magnitude (X) Values®);

subplot(412);

plot(thNorm, magnitudeErr);

title("Error between Magnitude Reference Values and X Values®);
subplot(413);
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plot(thNorm, z_c2p RWV);

title("CORDIC Angle (Z2) Values®);

subplot(414);

plot(thNorm, angleErr);

title("Error between Angle Reference Values and Z Values®);
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Set Data Types Using Min/Max Instrumentation

This example shows how to set fixed-point data types by instrumenting MATLAB® code
for min/max logging and using the tools to propose data types.

The functions you will use are:

*  buildInstrumentedMex - Build MEX function with instrumentation enabled
* showlInstrumentationResults - Show instrumentation results

+ clearInstrumentationResults - Clear instrumentation results
The Unit Under Test

The function that you convert to fixed-point in this example is a second-order direct-form
2 transposed filter. You can substitute your own function in place of this one to reproduce
these steps in your own work.

function [y,z] = fi_2nd_order_df2t_filter(b,a,x,y,z)
for i=1:length(x)
y(1) = b(1)*x(1) + z(1);
z(1) = b(2)*x(1) + z(2) - a(2) * y(i);
z(2) = b(3)*x(1) - a@) * y(i);

end

end

For a MATLAB® function to be instrumented, it must be suitable for code generation.
For information on code generation, see the reference page for buildInstrumentedMex. A
MATLAB® Coder™ license is not required to use bui ldInstrumentedMex.

In this function the variables y and z are used as both inputs and outputs. This is an
important pattern because:

* You can set the data type of y and z outside the function, thus allowing you to re-use
the function for both fixed-point and floating-point types.

* The generated C code will create y and z as references in the function argument
list. For more information about this pattern, see the documentation under Code
Generation from MATLAB® > User's Guide > Generating Efficient and Reusable
Code > Generating Efficient Code > Eliminating Redundant Copies of Function
Inputs.

Run the following code to copy the test function into a temporary directory so this
example doesn't interfere with your own work.

3-149



3 Fixed-Point Topics

3-150

tempdirObj = fidemo.FfiTempdir("fi_instrumentation_Ffixed_point_filter_demo®);

copyfile(fullfile(matlabroot, "toolbox", "fixedpoint”, "fidemos”, "+fidemo”, ...
"fi_2nd_order_df2t_filter.m"),".","f");

Run the following code to capture current states, and reset the global states.

FIPREF_STATE = get(Ffipref);
reset(fipref)

Data Types Determined by the Requirements of the Design

In this example, the requirements of the design determine the data type of input X. These
requirements are signed, 16-bit, and fractional.

N
X

256;
fi(zeros(N,1),1,16,15);

The requirements of the design also determine the fixed-point math for a DSP target
with a 40-bit accumulator. This example uses floor rounding and wrap overflow to
produce efficient generated code.

F = fimath("RoundingMethod®, "Floor", ...
"OverflowAction”®, "Wrap”®, ...
"ProductMode®, "KeepLSB*, . ..
"ProductWordLength®,40, ...
"SumMode* , "KeepLSB", . ..
"SumWordLength* ,40);

The following coefficients correspond to a second-order lowpass filter created by

[num,den] = butter(2,0.125)

The values of the coefficients influence the range of the values that will be assigned to
the filter output and states.

num
den

= [0.0299545822080925 0.0599091644161849 0.0299545822080925];

= [1 -1.4542435862515900 0.5740619150839550];

The data type of the coefficients, determined by the requirements of the design, are
specified as 16-bit word length and scaled to best-precision. A pattern for creating Fi
objects from constant coefficients is:

1. Cast the coefficients to i objects using the default round-to-nearest and saturate
overflow settings, which gives the coefficients better accuracy.



Set Data Types Using Min/Max Instrumentation

2. Attach Fimath with floor rounding and wrap overflow settings to control arithmetic,
which leads to more efficient C code.

b
a

fi(num,1,16); b.fimath
fi(den,1,16); a.fimath

Fs
s

Hard-code the filter coefficients into the implementation of this filter by passing them as
constants to the bui ldInstrumentedMex command.

B
A

coder.Constant(b);
coder.Constant(a);

Data Types Determined by the Values of the Coefficients and Inputs

The values of the coefficients and values of the inputs determine the data types of output
y and state vector z. Create them with a scaled double datatype so their values will
attain full range and you can identify potential overflows and propose data types.

fi(zeros(N,1),1,16,15, "DataType”, "ScaledDouble”, *fimath" ,F);
fi(zeros(2,1),1,16,15, "DataType”, "ScaledDouble”, *fimath" ,F);

Instrument the MATLAB® Function as a Scaled-Double MEX Function

To instrument the MATLAB® code, you create a MEX function from the

MATLAB® function using the buildInstrumentedMex command. The

inputs to bui IdInstrumentedMex are the same as the inputs to fiaccel,

but bui IdInstrumentedMex has no fi-object restrictions. The output of

bui ldInstrumentedMex is a MEX function with instrumentation inserted, so when the
MEX function is run, the simulated minimum and maximum values are recorded for all
named variables and intermediate values.

Use the "-0" option to name the MEX function that is generated. If you do not use the
"-0" option, then the MEX function is the name of the MATLAB® function with *_mex*
appended. You can also name the MEX function the same as the MATLAB® function, but
you need to remember that MEX functions take precedence over MATLAB® functions
and so changes to the MATLAB® function will not run until either the MEX function is
re-generated, or the MEX function is deleted and cleared.

buildInstrumentedMex fi_2nd_order_df2t_filter ...

-0 Filter_scaled_double ...
-args {B,A,x,yisd,zisd}
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Test Bench with Chirp Input

The test bench for this system is set up to run chirp and step signals. In general, test
benches for systems should cover a wide range of input signals.

The first test bench uses a chirp input. A chirp signal is a good representative input
because it covers a wide range of frequencies.

t = linspace(0,1,N); % Time vector from O to 1 second

fl = N/2; % Target frequency of chirp set to Nyquist
xchirp = sin(pi*fl*t.”~2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x(:) = xchirp; % Cast the chirp to fixed-point

Run the Instrumented MEX Function to Record Min/Max Values

The instrumented MEX function must be run to record minimum and maximum values
for that simulation run. Subsequent runs accumulate the instrumentation results until
they are cleared with clearInstrumentationResults.

Note that the numerator and denominator coefficients were compiled as constants so
they are not provided as input to the generated MEX function.

ychirp = filter_scaled_double(x,yisd,zisd);

The plot of the filtered chirp signal shows the lowpass behavior of the filter with these
particular coefficients. Low frequencies are passed through and higher frequencies are
attenuated.

clf

plot(t,x,"c",t,ychirp, "bo-")
title("Chirp®)

legend(" Input®, "Scaled-double output®)
figure(gcf); drawnow;
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Show Instrumentation Results with Proposed Fraction Lengths for Chirp

The showInstrumentationResults command displays the code generation report with
instrumented values. The input to showlnstrumentationResults is the name of the
instrumented MEX function for which you wish to show results.

This 1s the list of options to the showlnstrumentationResults command:

+ —defaultDT T Default data type to propose for doubles, where T is a numerictype
object, or one of the strings {remainFloat, double, single, int8,
intlé, int32, int64, uint8, uintl6, uint32, uint64}. The default is
remainFloat.
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* -nocode Do not show MATLAB code in the printable report. Display only the logged
variables tables. This option only has effect in combination with the -printable option.

+ —optimizeWholeNumbers Optimize the word length of variables whose simulation
min/max logs indicate that they were always whole numbers.

+ -percentSafetyMargin N Safety margin for simulation min/max, where N
represents a percent value.

+ -printable Create a printable report and open in the system browser.
+ —proposeFL Propose fraction lengths for specified word lengths.

+ —proposeWL Propose word lengths for specified fraction lengths.
Potential overflows are only displayed for Fi objects with Scaled Double data type.

This particular design is for a DSP, where the word lengths are fixed, so use the
proposeFL flag to propose fraction lengths.

showlInstrumentationResults filter_scaled_double -proposeFL

Hover over expressions or variables in the instrumented code generation report to see the
simulation minimum and maximum values. In this design, the inputs fall between -1 and
+1, and the values of all variables and intermediate results also fall between -1 and +1.
This suggests that the data types can all be fractional (fraction length one bit less than
the word length). However, this will not always be true for this function for other kinds
of inputs and it is important to test many types of inputs before setting final fixed-point
data types.
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Test Bench with Step Input

The next test bench is run with a step input. A step input is a good representative input
because it is often used to characterize the behavior of a system.

xstep = [ones(N/2,1);-ones(N/2,1)];
x(:) = xstep;

Run the Instrumented MEX Function with Step Input

The instrumentation results are accumulated until they are cleared with
clearInstrumentationResults.

ystep = filter_scaled_double(x,yisd,zisd);

clf

plot(t,x,"c”,t,ystep, "bo-")
title("Step™)

legend(" Input®, "Scaled-double output®)
figure(gcf); drawnow;
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Show Accumulated Instrumentation Results

Even though the inputs for step and chirp inputs are both full range as indicated by X
at 100 percent current range in the instrumented code generation report, the step input
causes overflow while the chirp input did not. This is an illustration of the necessity to
have many different inputs for your test bench. For the purposes of this example, only
two inputs were used, but real test benches should be more thorough.

showlnstrumentationResults filter_scaled_double -proposeFL
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Apply Proposed Fixed-Point Properties

To prevent overflow, set proposed fixed-point properties based on the proposed fraction
lengths of 14-bits for y and z from the instrumented code generation report.

At this point in the workflow, you use true fixed-point types (as opposed to the scaled
double types that were used in the earlier step of determining data types).

yi
zi

fi(zeros(N,1),1,16,14,"fimath",F);
fi(zeros(2,1),1,16,14, " fimath" ,F);

Instrument the MATLAB® Function as a Fixed-Point MEX Function

Create an instrumented fixed-point MEX function by using fixed-point inputs and the
buildInstrumentedMex command.

buildInstrumentedMex fi_2nd order_df2t filter ...

-0 filter_fixed_point ...
-args {B,A,x,yi,zi}
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Validate the Fixed-Point Algorithm

After converting to fixed-point, run the test bench again with fixed-point inputs to
validate the design.

Validate with Chirp Input

Run the fixed-point algorithm with a chirp input to validate the design.

x(z) = xchirp;

[y,z] = filter_fixed_point(x,yi,zi);

[ysd,zsd] = Filter_scaled_double(x,yisd,zisd);
err = double(y) - double(ysd);

Compare the fixed-point outputs to the scaled-double outputs to verify that they meet
your design criteria.

clf

subplot(211);plot(t,x,"c",t,ysd, "bo-",t,y, "mx")

xlabel("Time (s)7);

ylabel ("Amplitude”)

legend(" Input”, "Scaled-double output”,"Fixed-point output®);
title("Fixed-Point Chirp®)
subplot(212);plot(t,err,"r");title("Error™);xlabel("t"); ylabel(Cerr”);
figure(gcf); drawnow;
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Inspect the variables and intermediate results to ensure that the min/max values are

within range.

showlnstrumentationResults filter_fixed_point
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Validate with Step Inputs
Run the fixed-point algorithm with a step input to validate the design.

Run the following code to clear the previous instrumentation results to see only the
effects of running the step input.

clearinstrumentationResults fTilter fixed point

Run the step input through the fixed-point filter and compare with the output of the
scaled double filter.

x(:) = xstep;
[y,z] = filter_fixed_point(x,yi,zi);

[ysd,zsd] = filter_scaled_double(x,yisd,zisd);
err = double(y) - double(ysd);

Plot the fixed-point outputs against the scaled-double outputs to verify that they meet
your design criteria.

clf
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subplot(211);plot(t,x,"c",t,ysd, "bo-",t,y, "mx")
title("Fixed-Point Step”);

legend(" Input®, "Scaled-double output®, "Fixed-point output”)
subplot(212);plot(t,err, "r");title("Error®);xlabel("t"); ylabel(“err®);
figure(gcf); drawnow;

Fixed-Point Step
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Input
1 —&— Scaled-double output | 7]
~!."

#*  Fixed-point output

0 0.1 02 0.3 04 0.5 .
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Inspect the variables and intermediate results to ensure that the min/max values are
within range.

showlInstrumentationResults Tilter_fixed_point
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Run the following code to restore the global states.

fipref(FIPREF_STATE);
cleariInstrumentationResults filter_fixed_point
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clearlInstrumentationResults filter_scaled double
clear Ti_2nd_order_df2t_filter_fixed_instrumented
clear Ti_2nd_order_df2t_filter_float_instrumented

Run the following code to delete the temporary directory.

tempdirObj.cleanUp;
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Convert Fast Fourier Transform (FFT) to Fixed Point

Convert Fast Fourier Transform (FFT) to Fixed Point

This example shows how to convert a textbook version of the Fast Fourier Transform
(FFT) algorithm into fixed-point MATLAB® code.

Run the following code to copy functions from the Fixed-Point Designer™ examples
directory into a temporary directory so this example doesn't interfere with your own
work.

tempdirObj = fidemo.FfiTempdir("fi_radix2fft_demo");

% Copying important functions to the temporary directory
copyfile(fullfile(matlabroot, "toolbox”", "fixedpoint”®, "fidemos”, "+fidemo”, . ..
"fi_m_radix2fft_algorithml_6 2.m"),"_","f");
copyfile(fullfile(matlabroot, "toolbox”", "fixedpoint”®, "fidemos”, "+fidemo”, . ..
"fi_m_radix2fft_algorithml_6 2 typed.m®"),".","f");
copyfile(fullfile(matlabroot, "toolbox”", "fixedpoint”®, "fidemos”, "+fidemo”, . ..
"fi_m_radix2fft_withscaling_typed.m®"),".","f");

Run the following code to capture current states, and reset the global states.

FIPREF_STATE = get(Ffipref);
reset(fipref)

Textbook FFT Algorithm

FFT is a complex-valued linear transformation from the time domain to the frequency
domain. For example, if you construct a vector as the sum of two sinusoids and transform
it with the FFT, you can see the peaks of the frequencies in the FFT magnitude plot.

n = 64; % Number of points

Fs = 4; % Sampling frequency in Hz

t = (0:(n-1))/Fs; % Time vector

f = linspace(0,Fs,n); % Frequency vector

fO = .2; f1 = .5; % Frequencies, in Hz

X0 = cos(2*pi*fO*t) + 0.55*cos(2*pi*fl*t); % Time-domain signal

X0 = complex(x0); % The textbook algorithm requires
% the input to be complex

y0 = FFt(x0); % Frequency-domain transformation
% FFt() is a MATLAB built-in
% Function

fidemo.Ffi_fft_demo_ini_plot(t,x0,f,y0); % Plotting the results from fft
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The peaks at 0.2 and 0.5 Hz in the frequency plot correspond to the two sinusoids of the
time-domain signal at those frequencies.

Note the reflected peaks at 3.5 and 3.8 Hz. When the input to an FFT is real-valued, as it
is in this case, then the output ¥ is conjugate-symmetric:

ylk) = conj(y(n — k))

There are many different implementations of the FFT, each having its own costs and
benefits. You may find that a different algorithm is better for your application than the
one given here. This algorithm provides you with an example of how you can begin your
own exploration.

This example uses the decimation-in-time unit-stride FFT shown in Algorithm 1.6.2

on page 45 of the book Computational Frameworks for the Fast Fourier Transform by
Charles Van Loan.

In pseudo-code, the algorithm in the textbook is as follows:

Algorithm 1.6.2. If = is a complex vector of length n and n = 2', then the following
algorithm overwrites & with F.zx.

= P.r

(lemg)

U = W (See Van Loan §1.4.11.)
forg =1:t
L=2% r=nfL: L,.=L/2:
fork =0:r-1
forj =0:L,-1
r=wuw{Lls—1+3) - x(kL + 7+ L)
r(kL+ij+L)=xlkL+j)-T
zkL+ i) =x(kL+3j)+ 1
end
end
end

The textbook algorithm uses zero-based indexing. Fliis an n-by-n Fourier-transform

matrix, £ is an n-by-n bit-reversal permutation matrix, and #’is a complex vector of
twiddle factors. The twiddle factors, i, are complex roots of unity computed by the
following algorithm:
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function w = Fi_radix2twiddles(n)
%F1_RADIX2TWIDDLES Twiddle factors for radix-2 FFT example.

%
%

W = FI_RADIX2TWIDDLES(N) computes the length N-1 vector W of
twiddle factors to be used in the FI_M_RADIX2FFT example code.

%
% See also FI_RADIX2FFT_DEMO.

% Reference:
%

% Twiddle factors for Algorithm 1.6.2, p. 45, Charles Van Loan,
% Computational Frameworks for the Fast Fourier Transform, SIAM,

% Philadelphia, 1992.

%

%  Copyright 2003-2011 The MathWorks, Inc.
%

t = log2(n);
if floor(t) = t

error("N must be an exact power of two.");
end

w = zeros(n-1,1);
k=1;
L=2;
% Equation 1.4.11, p. 34
while L<=n
theta = 2*pi/L;
% Algorithm 1.4.1, p. 23
for j=0:(L/2 - 1)
w(k) = complex( cos(J*theta), -sin(J*theta) );
k =k + 1;
end
L = L*2;
end

figure(gcft)

clf

w0 = Fidemo.fi_radix2twiddles(n);
polar(angle(w0) ,abs(w0),"0")

title("Twiddle Factors: Complex roots of unity®)



Convert Fast Fourier Transform (FFT) to Fixed Point

120

150

180

(s}

o

s}

]

o

Q

210

6]

Twiddle Factors: Complex roots of unity

o

Q

Q

240

(o]

Q

90
1
60
0.8
0.6
0.4
0.2
o
(o]
(s}
o] C
© . PR 300
o o] € O -
270

30

o)

[¢]

[¢]

]

[&]

o

[¢]

330

3-167



3 Fixed-Point Topics

3-168

Verify Floating-Point Code

To implement the algorithm in MATLAB, you can use the fidemo.Ffi_bitreverse
function to bit-reverse the input sequence. You must add one to the indices to convert
them from zero-based to one-based.

function x = fi_m_radix2fft_algorithml_6 2(x, w)
%FI1_M_RADIX2FFT_ALGORITHM1_6_2 Radix-2 FFT example.

%
%
%
%
%
%
%
%
%
%
%
%

%
%
%
%
%

Y = FI_M_RADIX2FFT_ALGORITHM1_6_2(X, W) computes the radix-2 FFT of
input vector X with twiddle-factors W. [Input X is assumed to be
complex.

The length of vector X must be an exact power of two.
Twiddle-factors W are computed via

W = fidemo.fi_radix2twiddles(N)
where N = length(X).

This version of the algorithm has no scaling before the stages.
See also FI_RADIX2FFT_DEMO, FI_M_RADIX2FFT_WITHSCALING.

Reference:
Charles Van Loan, Computational Frameworks for the Fast Fourier
Transform, SIAM, Philadelphia, 1992, Algorithm 1.6.2, p. 45.

Copyright 2004-2015 The MathWorks, Inc.

n = length(x); t = log2(n);
x = Fidemo.fi_bitreverse(x,n);
for g=1:t
L =27q; r = n/L; L2 = L/2;
for k=0:(r-1)
for j=0:(L2-1)

temp = w(L2-1+j+1) * x(k*L+j+L2+1);
X(k*L+j+L2+1) = x(k*L+j+1) - temp;
X(k*L+j+1) = x(k*L+j+1) + temp;
end
end
end
end
Visualization
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To verify that you correctly implemented the algorithm in MATLAB, run a known
signal through it and compare the results to the results produced by the MATLAB FFT
function.

As seen in the plot below, the error is within tolerance of the MATLAB built-in FFT
function, verifying that you have correctly implemented the algorithm.

y = Fi_m_radix2fft_algorithml_6_2(x0, w0);

fidemo. fi_fft_demo_plot(real(x0),y,y0,Fs, "Double data“,
{"FFT Algorithm 1.6.2","Built-in FFT"});
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Convert Functions to use Types Tables

To separate data types from the algorithm:
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1  Create a table of data type definitions.
2 Modify the algorithm code to use data types from that table.

This example shows the iterative steps by creating different files. In practice, you can
make the iterative changes to the same file.

Original types table

Create a types table using a structure with prototypes for the variables set to their
original types. Use the baseline types to validate that you made the initial conversion
correctly, and to programmatically toggle your function between floating point and fixed
point types. The index variables are automatically converted to integers by MATLAB
Coder™, so you don't need to specify their types in the table.

Specify the prototype values as empty ([ ]) since the data types are used, but not the
values.

function T = fi_m_radix2fft_original_types()
%F1_M_RADIX2FFT_ORIGINAL_TYPES Types Table Example
%

% Copyright 2015 The MathWorks, Inc.

T.x = double([D;
T.w = double([D;
T.n = double([D;

end

Type-aware algorithm function

Add types table T as an input to the function and use it to cast variables to a particular
type, while keeping the body of the algorithm unchanged.

function x = fi_m_radix2fft_algorithml_6 2 typed(x, w, T)
%FI1_M_RADIX2FFT_ORIGINAL_TYPED Radix-2 FFT example.

% Y = FI_M_RADIX2FFT_ALGORITHM1_6_2_ TYPED(X, W, T) computes the radix-2

% FFT of input vector X with twiddle-factors W. [Input X is assumed to be
% complex.

%

%  The length of vector X must be an exact power of two.

%  Twiddle-factors W are computed via
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% W = fidemo.fi_radix2twiddles(N)
% where N = length(X).

% T is a types table to cast variables to a particular type, while keeping
%  the body of the algorithm unchanged.

%  This version of the algorithm has no scaling before the stages.

% See also FI_RADIX2FFT_DEMO, FI_M_RADIX2FFT_WITHSCALING.

% Reference:

% Charles Van Loan, Computational Frameworks for the Fast Fourier

% Transform, SIAM, Philadelphia, 1992, Algorithm 1.6.2, p. 45.

%  Copyright 2015 The MathWorks, Inc.

%#codegen
n = length(x);
t = log2(n);
x = Fidemo.fi_bitreverse_typed(x,n,T);
LL cast(2.~(1:t),"like",T.n);

rr cast(n./LL,"like",T.n);
LL2 = cast(LL./2,"like",T.n);
for g=1:t

L = LL(®D;

r=re(@:;

L2 = LL2(q);

for k=0:(r-1)
for j=0:(L2-1)

temp = w(L2-1+j+1) * x(k*L+j+L2+1);
X(k*L+j+L2+1) = x(k*L+j+1) - temp;
X(K*L+j+1) = x(k*L+j+1) + temp;

end
end
end
end

Type-aware bitreversal function

Add types table T as an input to the function and use it to cast variables to a particular
type, while keeping the body of the algorithm unchanged.
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function x = Ffi_bitreverse_typed(x,n0,T)

%F1_BITREVERSE_TYPED Bit-reverse the input.

% X = FI_BITREVERSE_TYPED(X,n,T) bit-reverse the input sequence X, where

% N=length(X).

%

% T is a types table to cast variables to a particular type, while keeping
%  the body of the algorithm unchanged.

%

% See also FI_RADIX2FFT_DEMO.

%  Copyright 2004-2015 The MathWorks, Inc.
%
%#codegen
n = cast(n0, " like",T.n);
nv2 = bitsra(n,l);
J = cast(1,"like",T.n);
for i=1:(n-1)
if i<j
temp
x(@)
x(i)
end
k = nv2;
while k<j
3D = J-k;
k = bitsra(k,1);
end
1D = J+k;
end

x(d);
x(1);
temp;

Validate modified function

Every time you modify your function, validate that the results still match your baseline.
Since you used the original types in the types table, the outputs should be identical.
This validates that you made the conversion to separate the types from the algorithm
correctly.

T1 = fidemo.fi_m_radix2fft_original_types(); % Getting original data types declared in

X = cast(x0, "like",T1.x);
w = cast(w0, " like",T1.w);
y = Fi_m_radix2fft_algorithml_6_2 typed(x, w, T1l);
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fidemo.fi_fft_demo_plot(real(x),y,Yy0,Fs,"Double data“,
{"FFT Algorithm 1.6.2","Built-in FFT"});
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Create a fixed-point types table

Create a fixed-point types table using a structure with prototypes for the variables.
Specify the prototype values as empty ([ ]) since the data types are used, but not the
values.

function T = fi_m_radix2fft_fixed_types()
%F1_M_RADIX2FFT_FIXED_TYPES Example function
%

%  Copyright 2015 The MathWorks, Inc.

T.x = fi([].,1,16,14); % Picked the following types to ensure that the
T.w = fi([].,1,16,14); % inputs have maximum precision and will not
% overflow
T.n = int32([D; % Picked int32 as n is an index
end

Identify Fixed-Point Issues

Now, try converting the input data to fixed-point and see if the algorithm still looks good.
In this first pass, you use all the defaults for signed fixed-point data by using the Fi
constructor.

T2 = fidemo.Fi_m_radix2fft_fixed_types(); % Getting fixed point data types declared in

X
w

cast(x0, "like",T2.x);
cast(wO, "like",T2.w);

Re-run the same algorithm with the fixed-point inputs
y = Fi_m_radix2fft_algorithml_6_2_typed(X,w,T2);

fidemo. fi_fft_demo_plot(real(x),y,y0,Fs, "Fixed-point data”,
{"Fixed-point FFT Algorithm 1.6.2%,"Built-in FFT"});
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Note that the magnitude plot (center) of the fixed-point FFT does not resemble the plot
of the built-in FFT. The error (bottom plot) is much larger than what you would expect to
see for round off error, so it is likely that overflow has occurred.

Use Min/Max Instrumentation to Identify Overflows

To instrument the MATLAB® code, create a MEX function from the MATLAB® function
using the buildInstrumentedMex command. The inputs to bui IldInstrumentedMex

are the same as the inputs to fiaccel, but bui ldInstrumentedMex has no Ffi-

object restrictions. The output of bui ldInstrumentedMex is a MEX function with
instrumentation inserted, so when the MEX function is run, the simulated minimum and
maximum values are recorded for all named variables and intermediate values.

The "-0" option is used to name the MEX function that is generated. If the "-0" option
is not used, then the MEX function is the name of the MATLAB® function with *_mex*
appended. You can also name the MEX function the same as the MATLAB® function, but
you need to remember that MEX functions take precedence over MATLAB® functions
and so changes to the MATLAB® function will not run until either the MEX function is
re-generated, or the MEX function is deleted and cleared.

Create the input with a scaled double datatype so its values will attain full range and
you can identify potential overflows.

function T = fi_m_radix2fft_scaled_fixed_types()
%F1_M_RADIX2FFT_SCALED_FIXED_TYPES Example function
%

% Copyright 2015 The MathWorks, Inc.

DT = “ScaledDouble”; % Data type to be used for fi
% constructor

T.x = fi([]1,1,16,14, "DataType”,DT); % Picked the following types to
T.w = fi([],1,16,14, "DataType”,DT); % ensure that the inputs have
% maximum precision and will not
% overflow
T.n = int32([D: % Picked Int32 as n is an index
end

T3 = fidemo.fi_m_radix2fft_scaled_fixed_types(); % Getting fixed point data types decl:

x_scaled_double
w_scaled_double

cast(x0, " like",T3.x);
cast(w0, "like",T3.w);
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buildInstrumentedMex fi_m radix2fft_algorithml_6 2 typed ...
-0 fft_instrumented -args {x_scaled_double w_scaled_double T3}

Run the instrumented MEX function to record min/max values.
y_scaled_double = fft_instrumented(x_scaled_double,w_scaled_double,T3);
Show the instrumentation results.

showlnstrumentationResults fft_instrumented

You can see from the instrumentation results that there were overflows when assigning
into the variable X.

Calls:| Select a function call

MATLABGode Callstack Functon: fi_m._radix2fft algorithm1 6 2
Filter hal
= Functions
@ Gg fidemo

& 1im_radix2ft algorithm 6 2 typed

i

Summary | All Messages (0) | Variables

Order Variable Type size Class Complex  DTMode  Signedness WL ~ FL  roreentol ey

Current Range ‘Whole Number SEEME SERME
1 x 0 1x64  embeddedf  Yes ScaledDouble Signed 6 EEm No -17.04520175389448 25.320138438385612
2 w nput ext e ScaledDouble Signed © 14 s No 1 1
3 T Input
4 n Local No - - = = = Yes o o
5 t Local No - - = = = Yes 5 5
5 w Local 1x6 No - - = = = Yes 2 o
" Local 1x6 No Yes 2
8 w2 Local 1x6 No Yes 2
a Local No Yes 5
10 L Local No Yes 2 o
1 ' Local No Yes 2
12 L2 Local 1x1 ints2 No - - = = o= Yes EX
13 K Local 1x1 ints2 No - - = = = Yes 0 3
14 i Local 1x1 ints2 No - - = = = Yes 0 31
15 femp Local embeddedi  Yes ScaledDouble Signed R S ) No -1252563147499761 12525831474907604

Modify the Algorithm to Address Fixed-Point Issues

The magnitude of an individual bin in the FFT grows, at most, by a factor of n, where n is
the length of the FFT. Hence, by scaling your data by 1/n, you can prevent overflow from
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occurring for any input. When you scale only the input to the first stage of a length-n
FFT by 1/n, you obtain a noise-to-signal ratio proportional to n*2 [Oppenheim & Schafer
1989, equation 9.101], [Welch 1969]. However, if you scale the input to each of the stages
of the FFT by 1/2, you can obtain an overall scaling of 1/n and produce a noise-to-signal
ratio proportional to n [Oppenheim & Schafer 1989, equation 9.105], [Welch 1969].

An efficient way to scale by 1/2 in fixed-point is to right-shift the data. To do this, you use
the bit shift right arithmetic function bitsra. After scaling each stage of the FFT, and
optimizing the index variable computation, your algorithm becomes:

function x = Fi_m_radix2fft_withscaling_typed(x, w, T)
%F1_M_RADIX2FFT_WITHSCALING Radix-2 FFT example with scaling at each stage.

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

Y = FI_M_RADIX2FFT_WITHSCALING_TYPED(X, W, T) computes the radix-2 FFT of
input vector X with twiddle-factors W with scaling by 1/2 at each stage.
Input X is assumed to be complex.

The length of vector X must be an exact power of two.
Twiddle-factors W are computed via

W = fidemo.fi_radix2twiddles(N)
where N = length(X).

T is a types table to cast variables to a particular type, while keeping
the body of the algorithm unchanged.

This version of the algorithm has no scaling before the stages.
See also FI_RADIX2FFT_DEMO.
Reference:

Charles Van Loan, Computational Frameworks for the Fast Fourier

Transform, SIAM, Philadelphia, 1992, Algorithm 1.6.2, p. 45.

Copyright 2004-2015 The MathWorks, Inc.

%#codegen

length(x); t = log2(n);
fidemo.fi_bitreverse(x,n);

% Generate index variables as integer constants so they are not computed in
% the loop.-

LL = cast(2-~(1:t), " like",T.n);

rr = cast(n./LL,"like",T.n);
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LL2 = cast(LL./2,"like",T.n);
for g=1:t
L=LL(@; r =rr(q); L2 = LL2(®);
for k=0:(r-1)
for j=0:(L2-1)
temp = w(L2-1+j+1) * x(k*L+j+L2+1);
X(k*L+j+L2+1) = bitsra(x(k*L+j+1) - temp, 1);
x(k*L+j+1) = bitsra(x(k*L+j+1) + temp, 1);
end
end
end

end

Run the scaled algorithm with fixed-point data.

X
w

cast(x0, " like",T3.x);
cast(w0, "like",T3.w);

y = Fi_m_radix2fft_withscaling_typed(x,w,T3);

fidemo.fi_fft_demo_plot(real(x), y, y0/n, Fs, "Fixed-point data“,
{"Fixed-point FFT with scaling®, "Built-in FFT"});
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You can see that the scaled fixed-point FFT algorithm now matches the built-in FFT to a
tolerance that is expected for 16-bit fixed-point data.
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References
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Analysis.

Alan V. Oppenheim and Ronald W. Schafer, Discrete-Time Signal Processing, Prentice
Hall, 1989.

Peter D. Welch, "A Fixed-Point Fast Fourier Transform Error Analysis," IEEE®
Transactions on Audio and Electroacoustics, Vol. AU-17, No. 2, June 1969, pp. 151-157.

Run the following code to restore the global states.

fipref(FIPREF_STATE);
clearinstrumentationResults fft instrumented
clear fft_instrumented

Run the following code to delete the temporary directory.

cleanUp(tempdirObj);
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Detect Limit Cycles in Fixed-Point State-Space Systems

This example shows how to analyze a fixed-point state-space system to detect limit
cycles.

The example focuses on detecting large scale limit cycles due to overflow with zero inputs
and highlights the conditions that are sufficient to prevent such oscillations.

References:

[1] Richard A. Roberts and Clifford T. Mullis, "Digital Signal Processing", Addison-
Wesley, Reading, Massachusetts, 1987, ISBN 0-201-16350-0, Section 9.3.

[2] S. K. Mitra, "Digital Signal Processing: A Computer Based Approach", McGraw-Hill,
New York, 1998, ISBN 0-07-042953-7.

Select a State-Space Representation of the System.

We observe that the system is stable by observing that the eigenvalues of the state-
transition matrix A have magnitudes less than 1.

originalFormat = get(0, "format®);

format

A=1]J01; -.51]; B=[0; 1]; C=[1 0]; D = 0;
eig(h)

ans =
0.5000 + 0.5000i
0.5000 - 0.5000i
Filter Implementation
type(fullfile(matlabroot, "toolbox", "fixedpoint®, "fidemos”, "+fFidemo”, "fisisostatespacef
function [y,z] = Ffisisostatespacefilter(A,B,C,D,x,2)
%FISISOSTATESPACEFILTER Single-input, single-output statespace filter

% [Y,Zf] = FISISOSTATESPACEFILTER(A,B,C,D,X,Zi) Filters data X with
% initial conditions Zi with the state-space filter defined by matrices
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% A, B, C, D. Output Y and final conditions Zf are returned.

% Copyright 2004-2011 The MathWorks, Inc.

y = X5
z(:,2:1length(x)+1) = 0;
for k=1:length(x)

y(K) = C*z(:,k) + D*x(K);
z(:,k+1) = A*z(:,k) + B*x(K);
end

Floating-Point Filter
Create a floating-point filter and observe the trajectory of the states.

First, we choose random states within the unit square and observe where they are
projected after one step of being multiplied by the state-transition matrix A.

rng("default™);

clf

x1=[-111-1-1];

yl =[-1-111 -1];

plot(x1l,yl,"c")

axis([-1.5 1.5 -1.5 1.5]); axis square; grid;
hold on

% Plot the projection of the square
p = A*[x1;yl];
plot(p(1,:),p(2,:),"r")

r = 2*rand(2,1000)-1;
pr = A*r;
plot(pr(1,:),pr(2,:),"-")
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Random Initial States Followed Through Time

Drive the filter with a random initial state, normalized to be inside the unit square, with

the input all zero, and run the filter.

Note that some of the states wander outside the unit square, and that they eventually
wind down to the zero state at the origin, z=[0;0].

X zeros(10,1);
zi = [0;0];
g = quantizer([16 15]);
for k=1:20
y = X5

3-185



3 Fixed-Point Topics

3-186

zi(:) = randquant(q,size(A,1),1);
[y,zf] = fidemo.fisisostatespacefilter(A,B,C,D,x,zi);
plot(zf(1,:), zf(2,:),"go-", "markersize~",8);

end

title("Double-Precision State Sequence Plot");
xlabel ("z1"); ylabel("z2%)

Double-Precision State Sequence Plot
1.5 T T T T

057

1.5

State Trajectory

Because the eigenvalues are less than one in magnitude, the system is stable, and all
initial states wind down to the origin with zero input. However, the eigenvalues don't tell
the whole story about the trajectory of the states, as in this example, where the states
were projected outward first, before they start to contract.
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The singular values of A give us a better indication of the overall state trajectory.
The largest singular value is about 1.46, which indicates that states aligned with the
corresponding singular vector will be projected away from the origin.

svd(A)

ans

=

.4604
.3424

o

Fixed-Point Filter Creation
Create a fixed-point filter and check for limit cycles.

The MATLAB® code for the filter remains the same. It becomes a fixed-point filter
because we drive it with fixed-point inputs.

For the sake of illustrating overflow oscillation, we are choosing product and sum data
types that will overflow.

rng(“default®);

F = fimath("OverflowAction®, “*Wrap®, ...
"ProductMode”, "SpecifyPrecision®, ...
"ProductWordLength* ,16, "ProductFractionLength®,15, ...
"SumMode* , "SpecifyPrecision”, . ..
*SumWordLength*®,16, "SumFractionLength*®,15);

A = Fi(A, finath",F)
B = fi(B, fimath",F)
C = fi(C, fimath",F)
D = fi(D, fimath",F)
A =

0  1.0000

-0.5000 1.0000

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 14
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RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: SpecifyPrecision
ProductWordLength: 16
ProductFractionLength: 15
SumMode: SpecifyPrecision
SumWordLength: 16
SumFractionLength: 15
CastBeforeSum: true

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 14

RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: SpecifyPrecision
ProductWordLength: 16
ProductFractionLength: 15
SumMode: SpecifyPrecision
SumWordLength: 16
SumFractionLength: 15
CastBeforeSum: true

1 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 14

RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: SpecifyPrecision
ProductWordLength: 16
ProductFractionLength: 15
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SumMode: SpecifyPrecision
SumWordLength: 16
SumFractionLength: 15
CastBeforeSum: true

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 15

RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: SpecifyPrecision
ProductWordLength: 16
ProductFractionLength: 15
SumMode: SpecifyPrecision
SumWordLength: 16
SumFractionLength: 15
CastBeforeSum: true

Plot the Projection of the Square in Fixed-Point

Again, we choose random states within the unit square and observe where they are
projected after one step of being multiplied by the state-transition matrix A. The
difference is that this time matrix A is fixed-point.

Note that the triangles that projected out of the square before in floating-point, are now
wrapped back into the interior of the square.

clf
r = 2*rand(2,1000)-1;
pr = A*r;

plot([-1 1 1 -1 -1],[-1 -1 1 1 -1],"c")
axis([-1.5 1.5 -1.5 1.5]); axis square; grid;
hold on

plot(pr(1,:),pr(2,:),"-")
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Execute the Fixed-Point Filter.

The only difference between this and the previous code is that we are driving it with
fixed-point data types.

x = Ffi(zeros(10,1),1,16,15, fFimath",F);
zi = fi([0;0],1,16,15, " Fimath",F);
g = assignmentquantizer(zi);
e = double(eps(zi));
rng(“default®);
for k=1:20
y = X5
zi(:) = randquant(q,size(A,1),1);
[y,zf] = fidemo.fisisostatespacefilter(A,B,C,D,x,zi);
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if abs(double(zf(end)))>0.5, c="ro-"; else, c="go-"; end
plot(zf(1,:), zf(2,:),c, "markersize”,8);

end

title("Fixed-Point State Sequence Plot");

xlabel ("z1"); ylabel("z2%)

Fixed-Point State Sequence Plot

1.5

051

-1.5 -1 -0.5 0 0.5 1 1.5

Trying this for other randomly chosen initial states illustrates that once a state enters
one of the triangular regions, then it is projected into the other triangular region, and
back and forth, and never escapes.

Sufficient Conditions for Preventing Overflow Limit Cycles

There are two sufficient conditions to prevent overflow limit cycles in a system:
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* the system is stable i.e., abs(eig(A))<1,

* the matrix A is normal i.e., A™*A = A*A".
Note that for the current representation, the second condition does not hold.
Apply Similarity Transform to Create a Normal A

We now apply a similarity transformation to the original system that will create a
normal state-transition matrix A2.

T=1[-2 0;-11];

Tinv = [-.5 0;-.5 1];

A2 = Tinv*A*T; B2 = Tinv*B; C2 = C*T; D2 = D;

Similarity transformations preserve eigenvalues, as a result of which the system transfer
function of the transformed system remains same as before. However, the transformed
state transformation matrix A2 is normal.

Check for Limit Cycles on the Transformed System.

Plot the Projection of the Square of the Normal-Form System

Now the projection of random initial states inside the unit square all contract uniformly.
This is the result of the state transition matrix A2 being normal. The states are also
rotated by 90 degrees counterclockwise.

clf
r = 2*rand(2,1000)-1;
pr = A2*r;

plot([-1 11 -1 -1],[-2 -1 1 1 -1],"c"™)
axis([-1.5 1.5 -1.5 1.5]); axis square; grid;
hold on

plot(pr(1,:),pr(2,:),"-%)
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Plot the State Sequence

Plotting the state sequences again for the same initial states as before we see that the
outputs now spiral towards the origin.

x = Ffi(zeros(10,1),1,16,15, fFimath",F);
zi = fi([0;0],1,16,15, " Fimath",F);
g = assignmentquantizer(zi);
e = double(eps(zi));
rng(“default®);
for k=1:20
y = X5
zi(:) = randquant(q,size(A,1),1);
[y,zf] = fidemo.fisisostatespacefilter(A2,B2,C2,D2,x,zi);
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if abs(double(zf(end)))>0.5, c="ro-"; else, c="go-"; end
plot(zf(1,:), zf(2,:),c, "markersize”,8);
end
title("Normal-Form Fixed-Point State Sequence Plot");
xlabel ("z1"); ylabel("z2%)

Normal-Form Fixed-Point State Sequence Plot

1.5

Trying this for other randomly chosen initial states illustrates that there is no region
from which the filter is unable to recover.

set(0, "format®, originalFormat);
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Compute Quantization Error

This example shows how to compute and compare the statistics of the signal quantization
error when using various rounding methods.

First, a random signal is created that spans the range of the quantizer.

Next, the signal is quantized, respectively, with rounding methods 'fix', 'floor', 'ceil',
'nearest', and 'convergent', and the statistics of the signal are estimated.

The theoretical probability density function of the quantization error will be computed
with ERRPDF, the theoretical mean of the quantization error will be computed with
ERRMEAN, and the theoretical variance of the quantization error will be computed with
ERRVAR.

Uniformly Distributed Random Signal

First we create a uniformly distributed random signal that spans the domain -1 to 1 of
the fixed-point quantizers that we will look at.

g = quantizer([8 71);

r = realmax(q);

u = r*(2*rand(50000,1) - 1); % Uniformly distributed (-1,1)
XI=

linspace(-2*eps(q),2*eps(q) ,256);
Fix: Round Towards Zero.

Notice that with 'fix' rounding, the probability density function is twice as wide as the
others. For this reason, the variance is four times that of the others.

g = quantizer("fix",[8 71);
err = quantize(q,u) - u;
f_t = errpdf(q,xi);

mu_t = errmean(q);

v_t = errvar(q);

% Theoretical variance e
% Theoretical mean 0
fidemo.gerrordemoplot(q,f_t,xi,mu_t,v_t,err)

ps(g)™2 /7 3

-46.8586
-46.9154

Estimated error variance (dB)
Theoretical error variance (dB)
Estimated mean 7.788e-06
Theoretical mean 0
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err

Floor: Round Towards Minus Infinity.

Floor rounding is often called truncation when used with integers and fixed-point
numbers that are represented in two's complement. It is the most common rounding
mode of DSP processors because it requires no hardware to implement. Floor does not
produce quantized values that are as close to the true values as ROUND will, but it
has the same variance, and small signals that vary in sign will be detected, whereas in
ROUND they will be lost.

q = quantizer(“floor",[8 7]);
err = quantize(q,u) - u;

f_t = errpdf(q,xi);

mu_t = errmean(q);

v_t = errvar(q);
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errpdf

% Theoretical variance eps(Hn2 / 12
% Theoretical mean -eps(q)”/2
fidemo.gerrordemoplot(q,f_t,xi,mu_t,v_t,err)

-52.9148
-52.936

Estimated error variance (dB)
Theoretical error variance (dB)
Estimated mean -0.0038956
Theoretical mean -0.0039063

140 T T T T T

- Estimated

m— Theoretical

120 1

100

80

60

201

D I I
002 O0M5 001 0005 0 0.005 0.01 0.015 0.02

err

Ceil: Round Towards Plus Infinity.

q = quantizer(“ceil",[8 7]):
err = quantize(q,u) - u;
f_t = errpdf(q,xi);

mu_t = errmean(q);

3-197



3 Fixed-Point Topics

v_t = errvar(q);

% Theoretical variance eps(™2 / 12

% Theoretical mean eps(q)/2
fidemo.gerrordemoplot(q,f_t,xi,mu_t,v_t,err)

-52.9148
-52.936

Estimated error variance (dB)
Theoretical error variance (dB)
Estimated mean 0.0039169
Theoretical mean 0.0039063

- Estimated

m—— Theoretical

140 T T T T T

120 1

100

errpdf

60

40 1

D I I I
002 -0015 001 -0.0056 0 0.005 0.01 0.015 0.02

err

Round: Round to Nearest. In a Tie, Round to Largest Magnitude.

Round is more accurate than floor, but all values smaller than eps(q) get rounded to zero
and so are lost.
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errpdf

q = quantizer(“nearest",[8 7]):
err = quantize(q,u) - u;

f_t = errpdf(q,xi);

mu_t = errmean(q);

v_t = errvar(q);

% Theoretical variance eps("2 / 12
% Theoretical mean 0
fidemo.gerrordemoplot(q,f_t,xi,mu_t,v_t,err)

Estimated error variance (dB) = -52.9579
Theoretical error variance (dB) = -52.936
Estimated mean = -2.212e-06

Theoretical mean = 0O

- Estimated

— Theoretical

140 T T T T T

120 1

100

80

20

D i i i
002 -0015 001 -0.005 0 0.005 0.01 0.015 0.02

err
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Convergent: Round to Nearest. In a Tie, Round to Even.

Convergent rounding eliminates the bias introduced by ordinary "round" caused by
always rounding the tie in the same direction.

g = quantizer(“convergent®,[8 7]);

err = quantize(q,u) - u;
f_t = errpdf(q,xi);
mu_t = errmean(q);

v_t = errvar(q);

% Theoretical variance e
% Theoretical mean 0
fidemo.gerrordemoplot(q,f_t,xi,mu_t,v_t,err)

ps(g)”™2 / 12

Estimated error variance (dB) = -52.9579
Theoretical error variance (dB) -52.936
Estimated mean = -2.212e-06

Theoretical mean = 0
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errpdf

- Estimated

m— Theoretical

140 T T T T T

1201

100

40 1

201

D I I I
002 0015 -0.01 -0.005 0 0.005 0.0 0.015 0.02

err

Comparison of Nearest vs. Convergent

The error probability density function for convergent rounding is difficult to distinguish
from that of round-to-nearest by looking at the plot.

The error p.d.f. of convergent is
flerr) = 1/eps(q), for -eps(q)/2 <= err <= eps(q)/2, and 0 otherwise
while the error p.d.f. of round is
flerr) = 1/eps(q), for -eps(q)/2 < err <= eps(q)/2, and 0 otherwise

Note that the error p.d.f. of convergent is symmetric, while round is slightly biased
towards the positive.
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The only difference is the direction of rounding in a tie.
x=[-3.5:3.5]";
[x convergent(x) nearest(x)]

ans =

-3.5000 -4.0000 -3.0000
-2.5000 -2.0000 -2.0000
-1.5000 -2.0000 -1.0000

-0.5000 0 0
0.5000 0 1.0000
1.5000 2.0000 2.0000
2.5000 2.0000 3.0000
3.5000 4._.0000 4._.0000

Plot Helper Function

The helper function that was used to generate the plots in this example is listed below.

type(fullfile(matlabroot, "toolbox", "fixedpoint™, "fidemos”, "+fFidemo”, "gerrordemoplot.m™

function gerrordemoplot(q,f_t,xi,mu_t,v_t,err)

%QERRORDEMOPLOT Plot function for QERRORDEMO.

% QERRORDEMOPLOT(Q,F_T,X1,MU_T,V_T,ERR) produces the plot and display
% used by the example function QERRORDEMO, where Q is the quantizer

% whose attributes are being analyzed; F_T is the theoretical

% quantization error probability density function for quantizer Q

% computed by ERRPDF; XI is the domain of values being evaluated by

% ERRPDF; MU_T is the theoretical quantization error mean of quantizer Q
% computed by ERRMEAN; V_T is the theoretical quantization error

% variance of quantizer Q computed by ERRVAR; and ERR is the error

% generated by quantizing a random signal by quantizer Q.

%
% See QERRORDEMO for examples of use.

% Copyright 1999-2014 The MathWorks, Inc.
v=10*logl0(var(err));
disp(["Estimated error variance (dB) = ",num2str(v)]);

disp(["Theoretical error variance (dB) = " ,num2str(10*logl0(v_t))]):
disp(["Estimated mean = " ,num2str(mean(err))]);
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disp(["Theoretical mean = *,num2str(mu_t)]);

[n,c]=hist(err);

figure(gcft)

bar(c,n/(length(err)*(c(2)-c(1))), "hist");
line(xi,f_t,"linewidth",2,"color®,"r");

% Set the ylim uniformly on all plots

set(gca, "ylim",[0 max(errpdf(quantizer(qg-.format, "nearest”),xi)*1.1)])
legend("Estimated”, "Theoretical ")

xlabel("err®); ylabel("errpdf®)
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Normalize Data for Lookup Tables

This example shows how to normalize data for use in lookup tables.

Lookup tables are a very efficient way to write computationally-intense functions for
fixed-point embedded devices. For example, you can efficiently implement logarithm,
sine, cosine, tangent, and square-root using lookup tables. You normalize the inputs to
these functions to produce a smaller lookup table, and then you scale the outputs by the
normalization factor. This example shows how to implement the normalization function
that is used in examples Implement Fixed-Point Square Root Using Lookup Table and
Implement Fixed-Point Log2 Using Lookup Table.

Setup

To assure that this example does not change your preferences or settings, this code stores
the original state, and you will restore it at the end.

originalFormat = get(0, "format"); format long g
originalWarningState = warning("off", "fixed:fi:underflow™);
originalFiprefState = get(fipref); reset(fipref)

Function to Normalize Unsigned Data

This algorithm normalizes unsigned data with 8-bit bytes. Given input u > 0, the output
X is normalized such that

u=x1=2"n
where 1 <= X < 2 and nis an integer. Note that n may be positive, negative, or zero.

Function fi_normalize_unsigned_8 bit _byte looks at the 8 most-significant-bits

of the input at a time, and left shifts the bits until the most-significant bit is a 1. The
number of bits to shift for each 8-bit byte is read from the number-of-leading-zeros lookup
table, NLZLUT.

function [x,n] = Ffi_normalize_unsigned_8 bit_byte(u) %#codegen
assert(isscalar(u), "Input must be scalar®);
assert(all(u>0), "Input must be positive.");
assert(isfi(u) && isfixed(u), "Input must be a fi object with fixed-point data type
u = removefimath(u);
NLZLUT = number_of_leading_zeros_look up_table();
word_length = u.WordLength;
u_Ffraction_length = u_.FractionLength;
B = 8;
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end

leftshifts=int8(0);
% Reinterpret the input as an unsigned integer.
T_unsigned_integer = numerictype(0, word_length, 0);

\"
F

\%

reinterpretcast(u,T_unsigned_integer);
fimath("OverflowAction®, "Wrap®, - ..
"RoundingMethod®, "Floor”™, . ..
"SumMode* , "KeepLSB*", . ..
“SumWordLength®,v._.WordLength);
setfimath(v,F);

% Unroll the loop in generated code so there will be no branching.
for k = coder.unroll(1:ceil(word_length/B))

end
% The input has been left-shifted so the most-significant-bit is a 1.
% Reinterpret the output as unsigned with one integer bit, so

% that 1 <= x < 2.

T X

X
X
%
%

n

% For each iteration, see how many leading zeros are in the high

% byte of V, and shift them out to the left. Continue with the

% shifted V for as many bytes as it has.

%

% The index is the high byte of the input plus 1 to make it a

% one-based index.

index = int32(bitsra(v, word_length - B) + uint8(1));

% Index into the number-of-leading-zeros lookup table. This lookup
% table takes in a byte and returns the number of leading zeros in the
% binary representation.

shiftamount = NLZLUT(index);

% Left-shift out all the leading zeros in the high byte.

v = bitsll(v,shiftamount);

% Update the total number of left-shifts

leftshifts = leftshifts+shiftamount;

= numerictype(0O,word_length,word_length-1);
reinterpretcast(v, T_X);
removefimath(x);

Let Q = int(u). Then u = Q*2~(-u_fraction_length),
and x = Q*2~leftshifts * 2~(1-word_length). Therefore,
% u = x*2”n, where n is defined as:

word_length - u_fraction_length - leftshifts - 1;

Number-of-Leading-Zeros Lookup Table

Function number_of_leading_zeros_look_up_table is used by
fi_normalize _unsigned 8 bit _byte and returns a table of the number of leading
zero bits in an 8-bit word.
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The first element of NLZLUT is 8 and corresponds to u=0. In 8-bit value u =
00000000_2, where subscript 2 indicates base-2, there are 8 leading zero bits.

The second element of NLZLUT is 7 and corresponds to u=1. There are 7 leading zero
bits in 8-bit value u = 00000001_2.

And so forth, until the last element of NLZLUT is 0 and corresponds to u=255. There are
0 leading zero bits in the 8-bit value u=11111111_2.

The NLZLUT table was generated by:

>> B = 8; % Number of bits in a byte
>> NLZLUT = int8(B-ceil(log2((1:2"B))))

function NLZLUT = number_of_leading_zeros_look up_table()

% B = 8; % Number of bits in a byte

% NLZLUT int8(B-ceil (1og2((1:2"B))))
NLZLUT int8([8 5

OO OO0 O0OO0OO0OO0OO0CORFRRFPRFPFPFPEPEPEPNNNNWWDN

OO0 O0OO0OO0CO0OO0OO0COO0OFRPFPFPFPFPFPFEPEPNNNNW®WDAN
OO0 00000000 OFRPFPFPFPFPFPFEPEPNNNNWWMD
OO0OO0OO0OO0OO0OO0OO0OO0O0CORFRRFPRFPFPFPEPEPEPNNNNWWDMO
OO0OO0OO0OO0OO0OO0OO0OO0OO0CORRFPREPEPEPEPEPEPNNNNOWWD

OO0OO0OO0OO0OO0OO0OO0OO0OO0CORRFPRFPREPEPEPEPEPNNNNWWAOO
OO O0OO0OO0OO0OO0OO0OO0OO0CORRFRPRFPRFPEPEPEPENNNMNNWOWWAOO
OO0 OO0 O0OO0OO0OO0OO0CORFRRFPRFPFPEFPEPEPEPNNNNWWAOO
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0 0 0 0 0 0 0 0 .
0 0 0 0 0 0 0 0 .
0 0 0 0 0 0 0 0 .
0 0 0 0 0 0 0 0O ...
o 0o o o 0 o0 0 oD:
end
Example

For example, let
u = fi(0.3, 1, 16, 8);

In binary, u = 00000000.01001101 2 = 0.30078125 (the fixed-point value is not
exactly 0.3 because of roundoff to 8 bits). The goal is to normalize such that

u = 1.001101000000000 2 * 2~(-2) = x * 2™n.
Start with u represented as an unsigned integer.

High byte Low byte
00000000 01001101 Start: u as unsigned integer.

The high byte is 0 = 00000000_2. Add 1 to make an index out of it: index = 0 + 1 =
1. The number-of-leading-zeros lookup table at index 1 indicates that there are 8 leading
zeros: NLZLUT (1) = 8. Left shift by this many bits.

High byte Low byte
01001101 00000000 Left-shifted by 8 bits.

Iterate once more to remove the leading zeros from the next byte.

The high byte is 77 = 01001101 2. Add 1 to make an index out of it: index = 77 +
1 = 78. The number-of-leading-zeros lookup table at index 78 indicates that there is 1
leading zero: NLZLUT(78) = 1. Left shift by this many bits.

High byte Low byte
100110100 0000000 Left-shifted by 1 additional bit, for a total of 9.

Reinterpret these bits as unsigned fixed-point with 15 fractional bits.

X = 1.001101000000000_2 = 1.203125

The value for n is the word-length of u, minus the fraction length of u, minus the number
of left shifts, minus 1.
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n=116-8-9 -1=-2.
And so your result is:

[x,n] = fi_normalize_unsigned_8_bit_byte(u)

X =
1.203125
DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 16
FractionLength: 15
n =
int8
-2

Comparing binary values, you can see that x has the same bits as u, left-shifted by 9 bits.

binary_representation_of _u
binary_representation_of x

bin(u)
bin(x)

binary_representation_of u

0000000001001101

binary_representation_of X

1001101000000000

Cleanup

Restore original state.

set(0, “format®, originalFormat);
warning(originalWarningState);
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Ffipref(originalFiprefState);
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Implement Fixed-Point Log2 Using Lookup Table

This example shows how to implement fixed-point 1og2 using a lookup table. Lookup
tables generate efficient code for embedded devices.

Setup

To assure that this example does not change your preferences or settings, this code stores
the original state, and you will restore it at the end.

originalFormat = get(0, "format"); format long g
originalWarningState = warning("off", "fixed:fi:underflow™);
originalFiprefState = get(fipref); reset(Ffipref)

Log2 Implementation
The 1092 algorithm is summarized here.

1 Declare the number of bits in a byte, B, as a constant. In this example, B=8.

2 Use function fi_normalize_unsigned_8 bit_byte() described in example
Normalize Data for Lookup Tables to normalize the input u>0 such thatu = x *
2" nand1l <= x < 2.

3 Extract the upper B-bits of x. Let x_B denote the upper B-bits of x.

4  Generate lookup table, LOG2LUT, such that the integer i = x B - 2~(B-1) + 1
is used as an index to LOG2LUT so that 1og2(x_B) can be evaluated by looking up
the index 1og2(x_B) = LOG2LUT(i1).-

5 Use the remainder, r = X - X_B, interpreted as a fraction, to linearly interpolate
between LOG2LUT (1) and the next value in the table LOG2LUT(i+1). The
remainder, I, is created by extracting the lower w - B bits of X, where w
denotes the word length of x. It is interpreted as a fraction by using function
reinterpretcast().

6  Finally, compute the output using the lookup table and linear interpolation:

log2( u ) log2( x * 2™n )
n + log2( x )

n + LOG2LUT( i ) + r * ( LOG2LUT( i+1 ) - LOG2LUT( i ) )

function y = fi_log2lookup_8_bit_byte(u) %#codegen
% Load the lookup table
LOG2LUT = log2_lookup_table();
% Remove fimath from the input to insulate this function from math
% settings declared outside this function.
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u = removefimath(u);
% Declare the output
y:
B = 8; % Number of bits in a byte
w = u.WordLength;
for k = 1:numel(u)
assert(u(k)>0, " Input must be positive.");
% Normalize the input such that u = x * 2" and 1 <= x < 2
[x,n] = Fi_normalize_unsigned_8 bit_byte(u(k));
% Extract the high byte of x
high_byte = storedInteger(bitsliceget(x, w, w - B + 1));
% Convert the high byte into an index for LOG2LUT
i = high_byte - 2~(B-1) + 1;
% Interpolate between points.
% The upper byte was used for the index into LOG2LUT
% The remaining bits make up the fraction between points.
T_unsigned_fraction = numerictype(0, w-B, w-B);
r = reinterpretcast(bitsliceget(x,w-B,1), T _unsigned_fraction);
y(k) = n + LOG2LUT(i) + ...
r*(LOG2LUT(i+1) - LOG2LUT(1)) ;
end
% Remove fimath from the output to insulate the caller from math settings
% declared inside this function.
y = removefimath(y);
end

Log2 Lookup Table

Function 1og2_lookup_table loads the lookup table of 10g2 values. You can create the
table by running:

B = 8;

log2_table = log2((2*(B-1) : 2~(B)) 7/ 2~(B - 1))

function LOG2LUT = log2_lookup_table()

B = 8; % Number of bits in a byte
% log2_table = log2((2~(B-1) : 2~(B)) /7 2~(B - 1))
log2_table = [0.000000000000000 0.011227255423254 0.022367813028454

0.044394119358453
0.087462841250339
0.129283016944966
0.169925001442312
0.209453365628950
0.247927513443586
0.285402218862248

0.055282435501190
0.098032082960527
0.139551352398794
0.179909090014934
0.219168520462162
0.257387842692652
0.294620748891627

0.066089190457773
0.108524456778169
0.149747119504682
0.189824558880017
0.228818690495881
0.266786540694901
0.303780748177103

3-211

coder.nullcopy(fi(zeros(size(u)), numerictype(LOG2LUT), Ffimath(LOG2LUT)));

0.033423(
0.076815!
0.118941(
0.159871:
0.199672:
0.238404
0.276124-
0.312882
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0.321928094887362
0.357552004618084
0.392317422778760
0.426264754702098
0.459431618637297
0.491853096329675
0.523561956057013
0.554588851677637
0.584962500721156
0.614709844115208
0.643856189774725
0.672425341971496
0.700439718141092
0.727920454563199
0.754887502163469
0.781359713524660
0.807354922057604
0.832890014164742
0.857980995127572
0.882643049361841
0.906890595608518
0.930737337562886
0.954196310386875
0.977279923499916

1.000000000000000] ;

0.330916878114617
0.366322214245816
0.400879436282184
0.434628227636725
0.467605550082997
0.499845887083205
0.531381460516312
0.562242424221073
0.592457037268080
0.622051819456376
0.651051691178929
0.679480099505446
0.707359132080883
0.734709620225838
0.761551232444479
0.787902559391432
0.813781191217037
0.839203788096944
0.864186144654280
0.888743248898259
0.912889336229962
0.936637939002571
0.960001932068081
0.982993574694310

0.339850002884625
0.375039431346925
0.409390936137702
0.442943495848728
0.475733430966398
0.507794640198696
0.539158811108031
0.569855608330948
0.599912842187128
0.629356620079610
0.658211482751795
0.686500527183218
0.714245517666123
0.741466986401147
0.768184324776926
0.794415866350106
0.820178962415188
0.845490050944375
0.870364719583405
0.894817763307943
0.918863237274595
0.942514505339240
0.965784284662087
0.988684686772166

% Cast to fixed point with the most accurate rounding method

WL = 4*B;
FL = 2*B;

% Word length
% Fraction length

LOG2LUT = fi(log2_table,1,WL,FL, "RoundingMethod”, "Nearest™);

% Set fimath for the most efficient math operations

F = fimath("OverflowAction”, "Wrap”, ...
"RoundingMethod”, "Floor™, ...
"SumMode* , "SpecifyPrecision”, . ..

LOG2LUT = setfimath(LOG2LUT,F);

end

Example

"SumWordLength® ,WL, . ..

"SumFractionLength® ,FL, ...
"ProductMode”, "SpecifyPrecision”, ...
"ProductWordLength® ,WL, . ..
"ProductFractionLength”™ ,2*FL);

u = fi(linspace(0.001,20,100));

0.348728:
0.383704:
0.417852!
0.451211:
0.483815
0.515699:
0.546894-
0.577428:
0.607330:
0.636624¢
0.665335!
0.693486!
0.721099:
0.748192:
0.774787(
0.800899:
0.826548-
0.851749(
0.876516!
0.900866:!
0.924812!
0.948367:
0.971543!
0.994353:
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y = Fi_log2lookup_8 bit_byte(u);

y_expected =
%%3
clf
subplot(211)
plot(u,y,u,y expected)

log2(double(u));

legend("Output”, "Expected output”,"Location®, "Best")

subplot(212)
plot(u,double(y)-y_expected, "r*)
legend("Error"®)
figure(gcft)
5 T T T T T T T - _I - I_ ]
0 _// 4
[
-5 l— 1
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Expected output
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Cleanup

Restore original state.

set(0, "“format®, originalFormat);
warning(originalWarningState);
Ffipref(originalFiprefState);



Implement Fixed-Point Square Root Using Lookup Table

Implement Fixed-Point Square Root Using Lookup Table

This example shows how to implement fixed-point square root using a lookup table.
Lookup tables generate efficient code for embedded devices.

Setup

To assure that this example does not change your preferences or settings, this code stores
the original state, and you will restore it at the end.

originalFormat = get(0, "format"); format long g
originalWarningState = warning("off", "fixed:fi:underflow™);
originalFiprefState = get(fipref); reset(fipref)

Square Root Implementation
The square root algorithm is summarized here.

1 Declare the number of bits in a byte, B, as a constant. In this example, B=8.

2 Use function Fi_normalize_unsigned_8 bit byte() described in example
Normalize Data for Lookup Tables to normalize the input u>0 such thatu = x *
2™"n, 0.5 <= X < 2,and nis even.

3  Extract the upper B-bits of X. Let X_B denote the upper B-bits of X.

4  Generate lookup table, SQRTLUT, such that the integer i = x_B- 2~(B-2) + 1
is used as an index to SQRTLUT so that sqrt(x_B) can be evaluated by looking up
the index sqrt(x_B) = SQRTLUT ().

5 Use the remainder, r = X - X_B, interpreted as a fraction, to linearly interpolate
between SQRTLUT (1) and the next value in the table SQRTLUT(i+1). The
remainder, I, is created by extracting the lower w - B bits of X, where w
denotes the word-length of x. It is interpreted as a fraction by using function
reinterpretcast().

6 Finally, compute the output using the lookup table and linear interpolation:

sqrt( u ) sqrt( x * 2”™n )
sqrt(x) * 2~(n/2)

( SQRTLUT( i ) + r * ( SQRTLUT( i+1 ) - SQRTLUT(C i ) ) ) * 2~(n/2)

function y = Fi_sqrtlookup_8_bit _byte(u) %#codegen
% Load the lookup table
SQRTLUT = sqrt_lookup_table();
% Remove fimath from the input to insulate this function from math
% settings declared outside this function.
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end

u = rem

ovefimath(u);

% Declare the output

y:
B = 8;
w =
for k =
ass
if
els
end
end

% Number of bits in a byte

u.WordLength;

1:numel (u)
ert(u(k)>=0, "Input must be non-negative.");
u(k)::

y(k)=0;
e

% Normalize the input such that u = x * 2”n and 0.5 <= x < 2
[x,n] = Fi_normalize_unsigned_8 bit_byte(u(k));

isodd = storedlnteger(bitand(fi(1,1,8,0),fi(n)));

X = bitsra(x,isodd);

n =n + isodd;

% Extract the high byte of x

high_byte = storedInteger(bitsliceget(x, w, w - B + 1));

% Convert the high byte into an index for SQRTLUT

i = high_byte - 2~(B-2) + 1;

% The upper byte was used for the index into SQRTLUT.

% The remainder, r, interpreted as a fraction, is used to

% linearly interpolate between points.

T_unsigned_fraction = numerictype(0, w-B, w-B);

r = reinterpretcast(bitsliceget(x,w-B,1), T unsigned_fraction);
y(k) = bitshift((SQRTLUT(i) + r*(SQRTLUT(i+1) - SQRTLUT(1))),---

bitsra(n,1));

% Remove fimath from the output to insulate the caller from math settings
% declared inside this function.

y = rem

ovefimath(y);

Square Root Lookup Table

Function sqrt_lookup_table loads the lookup table of square-root values. You can
create the table by running:

sqgrt_table

= sqrt( (2~(B-2):2~(B))/2~(B-1) ):

function SQRTLUT = sqrt_lookup_table()

B = 8;

% sqrt_

% Number of bits in a byte
table = sqrt( (2~(B-2):2~(B))/2~(B-1) )

sqrt_table = [0.707106781186548 0.712609640686961 0.718070330817254

0.728868986855663 0.734208757779421 0.739509972887452

coder.nullcopy(fi(zeros(size(u)), numerictype(SQRTLUT), Ffimath(SQRTLUT)));

0.723489:
0.744773
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0.750000000000000
0.770551750371122
0.790569415042095
0.810092587300983
0.829156197588850
0.847791247890659
0.866025403784439
0.883883476483184
0.901387818865997
0.918558653543692
0.935414346693485
0.951971638232989
0.968245836551854
0.984250984251476
1.000000000000000
1.015504800579495
1.030776406404415
1.045825033167594
1.060660171779821
1.075290658380328
1.089724735885168
1.103970108290981
1.118033988749895
1.131923142267177
1.145643923738960
1.159202311936963
1.172603939955857
1.185854122563142
1.198957880828180
1.211919964354082
1.224744871391589
1.237436867076458
1.250000000000000
1.262438117295260
1.274754878398196
1.286953767623375
1.299038105676658
1.311011060212689
1.322875655532295
1.334634781503914
1.346291201783626
1.357847561400027
1.369306393762915
1.380670127148408

0.755190373349661
0.775604602874429
0.795495128834866
0.814900300650331
0.833854004007896
0.852386356061616
0.870524267324007
0.888291900221993
0.905711046636840
0.922801441264588
0.939581023648307
0.956066158798647
0.972271824131503
0.988211768802619
1.003898650263063
1.019344151893756
1.034559084827928
1.049553476484167
1.064336647870400
1.078917281352004
1.093303480283494
1.107502821666834
1.121522402807898
1.135368882786559
1.149048519428140
1.162567202358642
1.175930482639174
1.189143599402528
1.202211503854459
1.215138880951474
1.227930169024281
1.240589577579950
1.253121103485214
1.265528545707287
1.277815518766305
1.289985465034393
1.302041665999979
1.313987252601790
1.325825214724777
1.337558409939543
1.349189571557681
1.360721316067327
1.372156150006259
1.383496476323666

0.760345316287277
0.780624749799800
0.800390529679106
0.819679815537750
0.838525491562421
0.856956825050130
0.875000000000000
0.892678553567856
0.910013736160065
0.927024810886958
0.943729304408844
0.960143218483576
0.976281209488332
0.992156741649222
1.007782218537319
1.023169096484056
1.038327982864759
1.053268721647045
1.068000468164691
1.082531754730548
1.096870548424015
1.111024302164449
1.125000000000000
1.138804197393037
1.152443057161611
1.165922381636102
1.179247641507075
1.192424001771182
1.205456345124119
1.218349293101120
1.231107225224513
1.243734296383275
1.256234452640111
1.268611445636527
1.280868845744950
1.293010054098575
1.305038313613819
1.316956719106592
1.328768226591831
1.340475661845451
1.352081728298996
1.363589014329464
1.375000000000000
1.386317063301177
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0.765465!
0.785612:
0.805256:
0.824431¢
0.843171(
0.861503(
0.879452
0.897043
0.914296:
0.931229(
0.947859:
0.964203(
0.980274:
0.996086(
1.011650:¢
1.026979°
1.042083:
1.056970¢
1.071651
1.086134:
1.100426(
1.114534¢
1.128466¢
1.1422209:
1.155827¢
1.169267¢
1.182555¢
1.195695¢
1.208692-
1.221551:
1.234276:
1.246871(
1.259340:
1.271686¢
1.283914¢
1.296027"
1.308028(
1.319919¢
1.331704
1.343386¢
1.354967
1.366450¢
1.377837¢
1.389131¢
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1.391941090707505 1.394744600276337 1.397542485937369
1.403121520040228 1.405902734900249 1.408678458698081
1.414213562373095] ;
% Cast to Fixed point with the most accurate rounding method
WL = 4*B; % Word length
FL = 2*B; % Fraction length
SQRTLUT = fi(sqgrt_table, 1, WL, FL, "RoundingMethod®, "Nearest®);
% Set fimath for the most efficient math operations
F = fimath("OverflowAction”, "Wrap”®, ...
"RoundingMethod”®, "Floor”™, . ..
"SumMode* , "KeepLSB*", . ..
"SumWordLength® ,WL, . ..
"ProductMode”, "KeepLSB", . ..
"ProductWordLength® ,WL);
SQRTLUT = setfimath(SQRTLUT, F);
end

Example

u Ffi(linspace(0,128,1000),0,16,12);

y = Fi_sqrtlookup_8 bit_byte(u);

y_expected = sqrt(double(u));

clf

subplot(211)

plot(u,y,u,y_expected)

legend("Output”, "Expected output”,"Location”, "Best")

subplot(212)
plot(u,double(y)-y_expected, "r*)
legend("Error™)

figure(gct)

1.400334
1.411448
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Cleanup

Restore original state.

set(0, “format-”,
warning(originalWarningState);
fipref(originalFiprefState);

originalFormat);
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Set Fixed-Point Math Atributes
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This example shows how to set fixed point math attributes in MATLAB® code.

You can control fixed-point math attributes for assignment, addition, subtraction, and
multiplication using the fimath object. You can attach a Fimath object to a fi object using
setfimath. You can remove a fimath object from a Fi object using removefimath.

You can generate C code from the examples if you have MATLAB Coder™ software.
Set and Remove Fixed Point Math Atributes

You can insulate your fixed-point operations from global and local fimath settings by
using the setfimath and removefimath functions. You can also return from functions
with no Fimath attached to output variables. This gives you local control over fixed-point
math settings without interfering with the settings in other functions.

MATLAB Code

function y = user_written_sum(u)
% Setup
F = fimath("RoundingMethod®, "Floor”", ...
"OverflowAction®, "Wrap®, - - .
"SumMode* , "KeepLSB*", . ..
"SumWordLength*,32);
u = setfimath(u,F);
y = fi(0,true,32,get(u, "FractionLength®),F);
% Algorithm
for i=1:length(u)
y(:) =y +u@);
end
% Cleanup
y = removefimath(y);
end

Output has no Attached FIMATH

When you run the code, the Fimath controls the arithmetic inside the function, but
the return value has no attached fimath. This is due to the use of setfimath and
removefimath inside the function user_written_sum.

>> u
>> y

fi(1:10,true,16,11);
user_written_sum(u)
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55

DataTypeMode:
Signedness:
WordLength:

FractionLength:

Fixed-point: binary point scaling
Signed

32

11

Generated C Code

If you have MATLAB Coder software, you can generate C code using the following
commands.

>> u = fi(1:10,true,16,11);
>> codegen user_written_sum -args {u} -config:lib -launchreport

Functions fimath, setfimath and removefimath control the fixed-point math, but the
underlying data contained in the variables does not change and so the generated C code
does not produce any data copies.

int32_T user_written_sum(const intl6_T u[10])
{
int32_T y;
int32_T i;
/* Setup */
y = 0;
/* Algorithm */
for (i = 0; 1 < 10;
y += u[i];
b
/* Cleanup */
return y;

¥
Mismatched FIMATH

i++) {

When you operate on Fi objects, their Fimath properties must be equal, or you get an
error.

>> A = fi(pi, "ProductMode”, "KeepLSB");
>> B = fi(2, "ProductMode”, "SpecifyPrecision®);
> C=A*B

Error using embedded.fi/mtimes
The embedded.fimath of both operands must be equal.
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To avoid this error, you can remove Fimath from one of the variables in the expression.
In this example, the Fimath is removed from B in the context of the expression without
modifying B itself, and the product is computed using the Fimath attached to A.

>> C = A * removefimath(B)
C =
6.283203125

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 26

RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: KeepLSB
ProductWordLength: 32
SumMode: FullPrecision

Changing FIMATH on Temporary Variables

If you have variables with no attached Fimath, but you want to control a particular
operation, then you can attach a Fimath in the context of the expression without
modifying the variables.

For example, the product is computed with the Fimath defined by F.

>> F = fimath("ProductMode”, "KeepLSB", "OverflowAction”, "Wrap®, "RoundingMethod” , "Floor"’
>> A = fi(pi);

>> B = fi(2);

>> C = A * setfimath(B,F)

C =

6.2832

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 26

RoundingMethod: Floor
OverflowAction: Wrap
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ProductMode: KeeplLSB
ProductWordLength: 32
SumMode: FullPrecision
MaxSumWordLength: 128

Note that variable B is not changed.

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

Removing FIMATH Conflict in a Loop

You can compute products and sums to match the accumulator of a DSP with floor
rounding and wrap overflow, and use nearest rounding and saturate overflow on the
output. To avoid mismatched Fimath errors, you can remove the Fimath on the output
variable when it is used in a computation with the other variables.

MATLAB Code

In this example, the products are 32-bits, and the accumulator is 40-bits, keeping the
least-significant-bits with floor rounding and wrap overflow like C's native integer rules.
The output uses nearest rounding and saturate overflow.

function [y,z] = setfimath_removefimath_in_a_loop(b,a,x,z)

% Setup

F_floor = fimath("RoundingMethod®, "Floor™, ...
"OverflowAction”®, "Wrap”®, - ..
"ProductMode”®, "KeepLSB*", . ..
"ProductWordLength®,32, ...
"SumMode* , "KeepLSB*", . ..
"SumWordLength* ,40);

F_nearest = fimath("RoundingMethod”®,*Nearest”, ...

"OverflowAction®, *Wrap®);

% Set fimaths that are local to this function
b = setfimath(b,F_floor);
a = setfimath(a,F_floor);
x = setfimath(x,F_floor);
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z = setfimath(z,F_floor);
% Create y with nearest rounding
y = coder_nullcopy(fi(zeros(size(x)),true,16,14,F nearest));
% Algorithm
for j=1:length(x)
% Nearest assignment into y
yag) = b@*x@) + z(1);

% Remove y"s fimath conflict with other fimaths

z(1)
z(2)

end

(b@*x() + z(2)) - a(2) * removefimath(y(d)):;
b(3)*x() - a(3) * removefimath(y(g)):

% Cleanup: Remove fimath from outputs
y = removefimath(y);
z = removefimath(z);

end

Code Generation Instructions

If you have MATLAB Coder software, you can generate C code with the specificed
hardware characteristics using the following commands.

56;

1o kN

N
T
xste
num
den

[1

N X 9 T
o

N
[ones(N/2,1);-ones(N/2,1)];
[0.0299545822080925 0.0599091644161849 0.0299545822080925] ;

-1.4542435862515900 0.5740619150839550] ;

Ffi(num,true,16);
fi(den,true,16);
Ffi(xstep,true,16,15);

i = fi(zeros(2,1),true,16,14);

B
A
config_obj
config_obj
config_obj
config_obj
config_obj
config_obj
config_obj
config_obj
config_obj
config_obj

coder.Constant(b);
coder.Constant(a);

= coder.config("lib");

.GenerateReport = true;

-LaunchReport = true;

.TargetLang = "C";

.GenerateComments = true;

-GenCodeOnly = true;
-Hardwarelmplementation.ProdBitPerChar=8;
-Hardwarelmplementation._ProdBitPerShort=16;
-Hardwarelmplementation.ProdBitPerInt=32;
-Hardwarelmplementation._ProdBitPerLong=40;
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codegen -config config_obj setfimath_removefimath_in_a loop -args {B,A,x,zi} -launchrej
Generated C Code

Functions Fimath, setfimath and removefimath control the fixed-point math, but the
underlying data contained in the variables does not change and so the generated C code
does not produce any data copies.

void setfimath_removefimath_in_a loop(const intl6_T x[256], intl6_T z[2],
intle_T y[256])

{
int32_T j
int40_T

i0
intle T b

/* Setup */
/* Set fTimaths that are local to this function */
/* Create y with nearest rounding */
/* Algorithm */
for ( = 0; j < 256; j++) {
/* Nearest assignment into y */
i0 = 15705 * x[J] + ((int40_T)z[0] << 20);
b y = (intle_T)((int32_T)(i0 >> 20) + ((i0 & 524288L) !'= 0L));

/* Remove y"s fimath conflict with other fimaths */
z[0] = (intl6_T)(((31410 * x[j] + ((int40_T)z[1] << 20)) - ((int40_T)(-23826
* b_y) << 6)) >> 20);

z[1] = (intl6_T)((15705 * x[J] - ((int40_T)(9405 * b_y) << 6)) >> 20);
ylil = b_y;
}
/* Cleanup: Remove fimath from outputs */
}
Polymorphic Code

You can write MATLAB code that can be used for both floating-point and fixed-point
types using setfimath and removefimath.

function y = user_written_function(u)
% Setup
F = Ffimath("RoundingMethod®, "Floor", ...
"OverflowAction®, “"Wrap”®, - - .
"SumMode* , "KeepLSB*);
u = setfimath(u,F);
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% Algorithm

y = u + u;

% Cleanup

y = removefimath(y);
end

Fixed Point Inputs

When the function is called with fixed-point inputs, then fimath F is used for the
arithmetic, and the output has no attached Fimath.

>> u = fi(pi/8,true, 16,15, "RoundingMethod”, "Convergent”);
>> y = user_written_function(u)
y =

0.785400390625

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 15

Generated C Code for Fixed Point

If you have MATLAB Coder software, you can generate C code using the following
commands.

>> u = fi(pi/8,true,16,15, "RoundingMethod®, "Convergent®);
>> codegen user_written_function -args {u} -config:lib -launchreport

Functions fimath, setfimath and removefimath control the fixed-point math, but the
underlying data contained in the variables does not change and so the generated C code
does not produce any data copies.

int32_T user_written_function(intl6_T u)

{
/* Setup */
/* Algorithm */
/* Cleanup */
return u + u;

}

Double Inputs
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Since setfimath and removefimath are pass-through for floating-point types, the
user_written_function example works with floating-point types, too.

function y = user_written_function(u)
% Setup
F = fimath("RoundingMethod”,"Floor™, ...
"OverflowAction®, "Wrap”®, - - .
"SumMode* , "KeepLSB*);
u = setfimath(u,F);
% Algorithm
y = u + u;
% Cleanup
y = removefimath(y);
end

Generated C Code for Double

When compiled with floating-point input, you get the following generated C code.
>> codegen user_written_function -args {0} -config:lib -launchreport
real_T user_written_function(real_T u)
{
return u + u;
}
Where the real_T type is defined as a double:
typedef double real_T;
More Polymorphic Code

This function is written so that the output is created to be the same type as the input, so
both floating-point and fixed-point can be used with it.

function y = user_written_sum_polymorphic(u)
% Setup
F = fimath("RoundingMethod®, "Floor", ...
"OverflowAction®, "Wrap”®, - ..
"SumMode* , "KeepLSB", . ..
"SumWordLength*,32);

u = setfimath(u,F);

if isfi(u)
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y = fi(0,true,32,get(u, "FractionLength®),F);

else

y
end

zeros(1,1,class(u));

% Algorithm
for i=1:length(u)
y(:) =y + u(i);

end

% Cleanup
y = removefimath(y);

end
Fixed Point Generated C Code

If you have MATLAB Coder software, you can generate fixed-point C code using the
following commands.

>> u = fi(1:10,true,16,11);
>> codegen user_written_sum_polymorphic -args {u} -config:lib -launchreport

Functions Fimath, setfimath and removefimath control the fixed-point math, but the
underlying data contained in the variables does not change and so the generated C code
does not produce any data copies.

int32_T user_written_sum_polymorphic(const intl6_T u[10])

{
int32 T
int32_ T

-\

/* Setup */

y = 0;

/* Algorithm */

for (i = 0; 1 < 10; i++) {
y += uli];

}

/* Cleanup */
return y;

}
Floating Point Generated C Code
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If you have MATLAB Coder software, you can generate floating-point C code using the
following commands.

>> u = 1:10;
>> codegen user_written_sum_polymorphic -args {u} -config:lib -launchreport

real_T user_written_sum_polymorphic(const real_T u[10])

{
real T y;
int32. T i;

/* Setup */
y = 0.0;

/* Algorithm */

for (i = 0; i1 < 10; i++) {
y += ul[i];

}

/* Cleanup */
return y;

}

Where the real _T type is defined as a double:
typedef double real_T;

SETFIMATH on Integer Types

Following the established pattern of treating built-in integers like Fi objects, setfimath
converts integer input to the equivalent ¥ with attached fimath.

>> u = int8(5);
>> codegen user_written_u_plus_u -args {u} -config:lib -launchreport

function y = user_written_u_plus_u(u)

% Setup

F = fimath("RoundingMethod®, "Floor”", ...
"OverflowAction®, "Wrap”®, - - .
"SumMode* , "KeepLSB*", . ..
"SumWordLength*,32);

u = setfimath(u,F);

% Algorithm

Yy = u + u;

% Cleanup

y = removefimath(y);
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end

The output type was specified by the Fimath to be 32-bit.

int32_T user_written_u_plus_u(int8_T u)
{

/* Setup */

/* Algorithm */

/* Cleanup */

return u + u;

}
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Working with fimath Objects

* “fimath Object Construction” on page 4-2

* “fimath Object Properties” on page 4-5

+ “fimath Properties Usage for Fixed-Point Arithmetic” on page 4-13
+ “fimath for Rounding and Overflow Modes” on page 4-21

+ “fimath for Sharing Arithmetic Rules” on page 4-23

+ “fimath ProductMode and SumMode” on page 4-26

* “How Functions Use fimath” on page 4-32
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fimath Object Construction

4-2

In this section...

“fimath Object Syntaxes” on page 4-2

“Building fimath Object Constructors in a GUI” on page 4-3

fimath Object Syntaxes

The arithmetic attributes of a Fi object are defined by a local Fimath object, which

is attached to that Fi object. If a i object has no local Fimath, the following default
fimath values are used:

RoundingMethod: Nearest
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision

You can create Fimath objects in Fixed-Point Designer software in one of two ways:

*  You can use the Fimath constructor function to create new fimath objects.

* You can use the Fimath constructor function to copy an existing fimath object.

To get started, type
F = fimath

to create a Fimath object.
F =

RoundingMethod: Nearest
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision

To copy a Fimath object, simply use assignment as in the following example:

fimath;
F;
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isequal (F,G)
ans =

1

The syntax

F = fimath(..."PropertyName" ,PropertyValue...)

allows you to set properties for a Fimath object at object creation with property name/
property value pairs. Refer to “Setting fimath Properties at Object Creation” on page
4-11.

Building fimath Object Constructors in a GUI

When you are working with files in MATLAB, you can build your Fimath object
constructors using the Insert fimath Constructor dialog box. After specifying the
properties of the Fimath object in the dialog box, you can insert the prepopulated
Fimath object constructor at a specific location in your file.

For example, to create a Fimath object that uses convergent rounding and wraps on
overflow, perform the following steps:

1 On the Home tab, in the File section, click New > Script to open the MATLAB
Editor

e -
On the Editor tab, in the Edit section, click in the Insert button group.
Click the Insert fimath... to open the Insert fimath Constructor dialog box.

3  Use the edit boxes and drop-down menus to specify the following properties of the
fimath object:
* Rounding method = Floor
Overflow action = Wrap
*+ Product mode = FullPrecision

Sum mode = FullPrecision
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4\ Insert fimath Constructor l = ﬁj
Reounding method: :Floﬂr v:
Overflow action: :EWrap v:
Product mode; :FuIIP‘recision v:
Surm mode; :FuIIPrecisiun v:

O, ] [ Cancel ] ’ Help

To insert the Fimath object constructor in your file, place your cursor at the desired
location in the file. Then click OK on the Insert fimath Constructor dialog box.
Clicking OK closes the Insert fimath Constructor dialog box and automatically
populates the Fimath object constructor in your file:

fimath ('RoundingMethod', 'Floor',
'"'CverflowhAction', 'Wrap',
'ProductMode', 'FullPrecision’',

'SumMode", 'FullPrecision')

= L R
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fimath Object Properties

In this section...

“Math, Rounding, and Overflow Properties” on page 4-5
“How Properties are Related” on page 4-9

“Setting fimath Object Properties” on page 4-11

Math, Rounding, and Overflow Properties

You can always write to the following properties of Fimath objects:

Property Description Valid Values
CastBeforeSum |Whether both * 0 (default) — do not cast before sum
operands are * 1 — cast before sum
cast to the sum
data type before
addition Note: This property is hidden when the SumMode is set to
FullPrecision.
MaxProduct Maximum + 65535 (default)
WordLength allowable word - Any positive integer
length for the
product data type
MaxSum Maximum + 65535 (default)
WordLength allowable word - Any positive integer
length for the sum
data type
OverflowAction|Action to takeon |+ Saturate (default) — Saturate to maximum or
overflow minimum value of the fixed-point range on overflow.
* Wrap — Wrap on overflow. This mode is also known as
two's complement overflow.
ProductBias Bias of the product|+ 0 (default)
data type * Any floating-point number
ProductFixed |Fixed exponentof |+ -30 (default)
Exponent Ehe product data |, Any positive or negative integer
ype
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product data type

Property Description Valid Values

Note: The ProductFractionLength is the negative of the

ProductFixedExponent. Changing one property changes

the other.

ProductFractio|Fraction length, in |+ 30 (default)
Length bits, of the product | . Any positive or negative integer
data type

Note: The ProductFractionLength is the negative of the

ProductFixedExponent. Changing one property changes

the other.

ProductMode Defines how the * FullPrecision (default) — The full precision of the
product data type result is kept.
is determined * KeepLSB— Keep least significant bits. Specify the
product word length, while the fraction length is set to
maintain the least significant bits of the product.

* KeepMSB — Keep most significant bits. Specify the
product word length, while the fraction length is set to
maintain the most significant bits of the product.

* SpecifyPrecision— specify the word and fraction
lengths or slope and bias of the product.

ProductSlope [Slope of the *+ 9.3132e-010 (default)

* Any floating-point number

Note:

ProductSlope = ProductSlopeAdjustmentFactor x 27 ductFixedE

Changing one of these properties affects the others.

ponent
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Property Description Valid Values

ProductSlope [Slope adjustment |+ 1 (default)

AdjustmentFact|factor of the * Any floating-point number greater than or equal to 1
product data type and less than 2

Note:

ProductSlope = ProductSlopeAdjustmentFactor x 2F oductFixedE

Changing one of these properties affects the others.

ProductWord Word length, in + 32 (default)
Length bits, of the product |, Any positive integer
data type
RoundingMethod|Rounding method |+ Nearest (default) — Round toward nearest. Ties round
toward positive infinity.

+ Ceiling — Round toward positive infinity.

* Convergent — Round toward nearest. Ties round to
the nearest even stored integer (least biased).

* Zero — Round toward zero.

* Floor — Round toward negative infinity.

* Round — Round toward nearest. Ties round toward
negative infinity for negative numbers, and toward
positive infinity for positive numbers.

SumBias Bias of the sum * 0 (default)

data type * Any floating-point number
SumFixed Fixed exponent of |+ -30 (default)
Exponent the sum data type |. Any positive or negative integer

Note: The SumFractionLength is the negative of the
SumFixedExponent. Changing one property changes the

cponent

other.
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Property Description Valid Values

SumFraction Fraction length, + 30 (default)

Length in bits, of the sum |, Any positive or negative integer
data type

Note: The SumFractionLength is the negative of the

SumFixedExponent. Changing one property changes the

other.

SumMode Defines how the * FullPrecision (default) — The full precision of the
sum data type is result is kept.
determined + KeepLSB — Keep least significant bits. Specify the sum
data type word length, while the fraction length is set to
maintain the least significant bits of the sum.

+  KeepMSB — Keep most significant bits. Specify the sum
data type word length, while the fraction length is set
to maintain the most significant bits of the sum and no
more fractional bits than necessary

+ SpecifyPrecision — Specify the word and fraction
lengths or the slope and bias of the sum data type.

SumSlope Slope of the sum |+ 9.3132e-010 (default)
data type * Any floating-point number

Note:

SumSlope = SumSlopeAdjustmentFactor x 254 xedExponent

Changing one of these properties affects the others.
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Property Description Valid Values
SumSlope Slope adjustment |+ 1 (default)
AdjustmentFactifactor of the sum |, Any floating-point number greater than or equal to 1
data type and less than 2
Note:
SumSlope = SumSlopeAdjustmentFactor x 254mFedExponent
Changing one of these properties affects the others.
SumWord Word length, in + 32 (default)
Length bits, of the sum

data type

* Any positive integer

For details about these properties, refer to the “fi Object Properties” on page 2-18. To
learn how to specify properties for Fimath objects in Fixed-Point Designer software, refer
to “Setting fimath Object Properties” on page 4-11.

How Properties are Related

Sum data type properties

The slope of the sum of two Fi objects is related to the SumSlopeAdjustmentFactor
and SumFixedExponent properties by

SumSlope = SumSlopeAdjustmentFactor X

2S umFixedExp onent

If any of these properties are updated, the others are modified accordingly.

In a FullPrecision sum, the resulting word length is represented by

W, =integer length + F

where

integer length = max (W, — F,,W, — F, )+ ceil (log 2( Number OfSummands )
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and

F, =max(F,,F)

When the SumMode is set to KeepLSB, the resulting word length and fraction length is
determined by

W, =specified in the SumWordLength property
FS = maX(Fast)

When the SumMode is set to KeepMSB, the resulting word length and fraction length is
determined by

W =specified in the SumWordLength property
F; =W, —integer length
where

integer length = max (W, — F,,W, — F; )+ ceil (log 2( Number OfSummands )

When the SumMode is set to SpecifyPrecision, you specify both the word and
fraction length or slope and bias of the sum data type with the SumWordLength and
SumFractionLength, or SumSlope and SumBias properties respectively.

Product data type properties

The slope of the product of two Fi objects is related to the
ProductSlopeAdjustmentFactor and ProductFixedExponent properties by

ProductSlope = ProductSlopeAdjustmentFactor x 27 eductFixedExponent

If any of these properties are updated, the others are modified accordingly.

In a FullPrecision multiply, the resulting word length and fraction length are
represented by

W, =W, +W,
F,=F,+F,
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When the ProductMode is KeepLSB the word length and fraction length are determined
by

W, =specified in the ProductWordLength property
F,=F,+F,

When the ProductMode is KeepMSB the word length and fraction length are

W), =specified in the ProductWordLength property
Fp = Wp —integer length

where
integer length= W, +W,)—(F, - F;)

When the ProductMode is set to SpecifyPrecision, you specify both the word and
fraction length or slope and bias of the product data type with the ProductWordLength
and ProductFractionLength, or ProductSlope and ProductBias properties
respectively.

For more information about how certain functions use the fimath properties, see

Setting fimath Object Properties

+ “Setting fimath Properties at Object Creation” on page 4-11
+ “Using Direct Property Referencing with fimath” on page 4-12

Setting fimath Properties at Object Creation

You can set properties of Fimath objects at the time of object creation by including
properties after the arguments of the Fimath constructor function.

For example, to set the overflow action to Saturate and the rounding method to
Convergent,

F = fimath("OverflowAction”, "Saturate”, "RoundingMethod”, "Convergent™)

F =
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RoundingMethod: Convergent
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision

In addition to creating a Fimath object at the command line, you can also set fFimath
properties using the Insert fimath Constructor dialog box. For an example of this
approach, see “Building fimath Object Constructors in a GUI” on page 4-3.

Using Direct Property Referencing with fimath

You can reference directly into a property for setting or retrieving fimath object
property values using MATLAB structure-like referencing. You do so by using a period to
index into a property by name.

For example, to get the RoundingMethod of F,
F_RoundingMethod
ans =
Convergent
To set the OverflowAction of F,
F.OverflowAction = "Wrap®
F =
RoundingMethod: Convergent
OverflowAction: Wrap

ProductMode: FullPrecision
SumMode: FullPrecision
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fimath Properties Usage for Fixed-Point Arithmetic

In this section...
“fimath Rules for Fixed-Point Arithmetic” on page 4-13
“Binary-Point Arithmetic” on page 4-15

“[Slope Bias] Arithmetic” on page 4-18

fimath Rules for Fixed-Point Arithmetic

Fimath properties define the rules for performing arithmetic operations on fi objects.
The Fimath properties that govern fixed-point arithmetic operations can come from a
local Fimath object or the Fimath default values.

To determine whether a i object has a local fimath object, use the isfimathlocal
function.

The following sections discuss how Fi objects with local Fimath objects interact with Fi
objects without local fimath.

Binary Operations
In binary fixed-point operations such as ¢ = a + b, the following rules apply:

+ If both a and b have no local fimath, the operation uses default fimath values to
perform the fixed-point arithmetic. The output Fi object c also has no local fimath.

+ If either a or b has a local Fimath object, the operation uses that Fimath object to
perform the fixed-point arithmetic. The output i object ¢ has the same local fFimath
object as the input.

Unary Operations
In unary fixed-point operations such as b = abs(a), the following rules apply:

+ If a has no local fimath, the operation uses default fimath values to perform the fixed-
point arithmetic. The output Fi object b has no local fimath.

+ If a has alocal Fimath object, the operation uses that Fimath object to perform the
fixed-point arithmetic. The output Fi object b has the same local Fimath object as the
input a.
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4-14

When you specify a Fimath object in the function call of a unary fixed-point operation,
the operation uses the Fimath object you specify to perform the fixed-point arithmetic.
For example, when you use a syntax such asb = abs(a,F) orb = sqrt(a,F), the
abs and sqrt operations use the Fimath object F to compute intermediate quantities.
The output Fi object b always has no local fimath.

Concatenation Operations

In fixed-point concatenation operations suchasc = [a b],c = [a;b] andc =
bitconcat(a,b), the following rule applies:

* The Fimath properties of the leftmost i object in the operation determine the
fimath properties of the output Fi object C.

For example, consider the following scenarios for the operationd = [a b c]:

+ Ifais a Fi object with no local fimath, the output i object d also has no local fimath.

+ If a has a local Fimath object, the output Fi object d has the same local Fimath
object.

+ If ais not a Fi object, the output Fi object d inherits the Fimath properties of the
next leftmost Fi object. For example, if b is a Fi object with a local Fimath object, the
output Fi object d has the same local Fimath object as the input Fi object b.

fimath Object Operations: add, mpy, sub

The output of the Fimath object operations add, mpy, and sub always have no local
fimath. The operations use the Fimath object you specify in the function call, but the
output Fi object never has a local Fimath object.

MATLAB Function Block Operations

Fixed-point operations performed with the MATLAB Function block use the same rules
as fixed-point operations performed in MATLAB.

All input signals to the MATLAB Function block that you treat as i objects associate
with whatever you specify for the MATLAB Function block fimath parameter. When
you set this parameter to Same as MATLAB, your i objects do not have local fimath.
When you set the MATLAB Function block fimath parameter to Specify other,
you can define your own set of Fimath properties for all Fi objects in the MATLAB
Function block to associate with. You can choose to treat only fixed-point input signals as
Ti objects or both fixed-point and integer input signals as Fi objects. See “Using fimath
Objects in MATLAB Function Blocks” on page 14-76.
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Binary-Point Arithmetic
The Fimath object encapsulates the math properties of Fixed-Point Designer software.

Ti objects only have a local fFimath object when you explicitly specify Fimath properties
in the Fi constructor. When you use the sFi or ufi constructor or do not specify any
Ffimath properties in the Fi constructor, the resulting i object does not have any local
fimath and uses default fimath values.

a = fi(pi)
a =
3.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13
a.fimath

isfimathlocal (a)

ans =
RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision
ans =
0
To perform arithmetic with +, -, .*, or * on two Fi operands with local Fimath objects,

the local Fimath objects must be identical. If one of the Fi operands does not have a local
fimath, the fimath properties of the two operands need not be identical. See “fimath
Rules for Fixed-Point Arithmetic” on page 4-13 for more information.

a = fi(pi);
b = fi(8);
isequal(a.fimath, b.fimath)

ans =
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1
a+b
ans =
11.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 19
FractionLength: 13

To perform arithmetic with +, -, .*, or *, two Fi operands must also have the same data

type. For example, you can add two Fi objects with data type double, but you can not
add an object with data type double and one with data type single:

a = Fi(3, "DataType”, “double™)
a =
3
DataTypeMode: Double
b = fi(27, "“DataType®, “double®)
b =
27
DataTypeMode: Double
a+b
ans =
30
DataTypeMode: Double
c = fi(12, "DataType®, "single”)
c =

12
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DataTypeMode: Single
a+c

Math operations are not allowed on Fl objects with different data types.

Fixed-point Fi object operands do not have to have the same scaling. You can perform
binary math operations on a Fi object with a fixed-point data type and a Fi object with a
scaled doubles data type. In this sense, the scaled double data type acts as a fixed-point
data type:

fi(pi)

a
a =
3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

b = fi(magic(2),
"DataTypeMode®, "Scaled double: binary point scaling”)

b =
1 3
4 2
DataTypeMode: Scaled double: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 12
a+b
ans =

4.1416 6.1416
7.1416 5.1416

DataTypeMode: Scaled double: binary point scaling
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Signedness: Signed

WordLength: 18
FractionLength: 13

Use the divide function to perform division with doubles, singles, or binary point-only
scaling Fi objects.

[Slope Bias] Arithmetic

Fixed-Point Designer software supports fixed-point arithmetic using the local fimath
object or default fimath for all binary point-only signals. The toolbox also supports
arithmetic for [Slope Bias] signals with the following restrictions:

4-18

[Slope Bias] signals must be real.

You must set the SumMode and ProductMode properties of the governing fimath to
"SpecifyPrecision” for sum and multiply operations, respectively.

You must set the CastBeforeSum property of the governing fimath to "true”.

Fixed-Point Designer does not support the divide function for [Slope Bias] signals.

Fimath("SumMode®, "SpecifyPrecision”,

"SumFractionLength®, 16)

RoundingMethod:
OverflowAction:
ProductMode:
SumMode:
SumWordLength:
SumFractionLength:
CastBeforeSum:

= fi(pi, “fimath", f)

3.1416

DataTypeMode:
Signedness:
WordLength:

Nearest

Saturate
FullPrecision
SpecifyPrecision
32

16

true

Fixed-point: binary point scaling
Signed
16
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FractionLength: 13
RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: SpecifyPrecision
SumWordLength: 32
SumFractionLength: 16
CastBeforeSum: true
b = fi(22, true, 16, 2n~-8, 3, "fimath", )
b =
22
DataTypeMode: Fixed-point: slope and bias scaling
Signedness: Signed
WordLength: 16
Slope: 0.00390625
Bias: 3
RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: SpecifyPrecision
SumWordLength: 32
SumFractionLength: 16
CastBeforeSum: true
a+b
ans =
25.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 16
RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: SpecifyPrecision
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SumWordLength: 32
SumFractionLength: 16
CastBeforeSum: true

Setting the SumMode and ProductMode properties to SpecifyPrecision are mutually
exclusive except when performing the * operation between matrices. In this case, you
must set both the SumMode and ProductMode properties to SpecifyPrecision for
[Slope Bias] signals. Doing so is necessary because the * operation performs both sum
and multiply operations to calculate the result.
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fimath for Rounding and Overflow Modes

Only rounding methods and overflow actions set prior to an operation with Fi objects
affect the outcome of those operations. Once you create a i object in MATLAB, changing
its rounding or overflow settings does not affect its value. For example, consider the i
objects a and b:

p = Fipref("NumberDisplay®, "RealWorldvValue-®, ...
“NumericTypeDisplay®, "none®, "FimathDisplay®, "none®);

T = numerictype(“"WordLength®,8, "FractionLength®,7);
F = Ffimath("RoundingMethod”, "Floor", "OverflowAction®, "Wrap™);
a=fi(1,T,F)
a =
-1
b=*fi(1,T)
b =
0.9922

Because you create a with a fimath object F that has OverflowAction set to
Wrap, the value of a wraps to -1. Conversely, because you create b with the default
OverflowAction value of Saturate, its value saturates to 0.9922.

Now, assign the Fimath object F to b:
b_.fimath = F
b =

0.9922

Because the assignment operation and corresponding overflow and saturation happened
when you created b, its value does not change when you assign it the new Fimath object
F.

Note: fi objects with no local fimath and created from a floating-point value always
get constructed with a RoundingMethod of Nearest and an OverflowAction
of Saturate. To construct i objects with different RoundingMethod and
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OverflowAction properties, specify the desired RoundingMethod and
OverflowAction properties in the Fi constructor.

For more information about the Fimath object and its properties, see “fimath Object
Properties” on page 4-5
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fimath for Sharing Arithmetic Rules

There are two ways of sharing Fimath properties in Fixed-Point Designer software:

* “Default fimath Usage to Share Arithmetic Rules” on page 4-23
* “Local fimath Usage to Share Arithmetic Rules” on page 4-23

Sharing fimath properties across Fi objects ensures that the i objects are using the
same arithmetic rules and helps you avoid “mismatched fimath” errors.

Default fimath Usage to Share Arithmetic Rules

You can ensure that your Fi objects are all using the same Fimath properties by not
specifying any local fimath. To assure no local Fimath is associated with a Fi object, you
can:

+ Create a Fi object using the Fi constructor without specifying any fimath properties
in the constructor call. For example:

a = Fi(pi)

* Create a T object using the sFi or ufi constructor. All Fi objects created with these
constructors have no local fimath.
b = sfi(pi)

+ Use removefimath to remove a local Fimath object from an existing Fi object.

Local fimath Usage to Share Arithmetic Rules

You can also use a Fimath object to define common arithmetic rules that you would
like to use for multiple Fi objects. You can then create your Fi objects, using the same
fimath object for each. To do so, you must also create a numerictype object to define
a common data type and scaling. Refer to “numerictype Object Construction” on page
6-2 for more information on humerictype objects. The following example shows

the creation of a numerictype object and Fimath object, and then uses those objects to
create two Fi objects with the same numerictype and Fimath attributes:

T = numerictype(“WordLength®,32, "FractionLength®,30)

T =
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DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 30

T
1

Ffimath("RoundingMethod®, "*Floor", . ..
"OverflowAction®, "Wrap®)

RoundingMethod: Floor
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision

a = fi(pi, T, F)

a =
-0.8584
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 30
RoundingMethod: Floor
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision
b = Ffi(pi/Z2, T, F)
b =

1.5708

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 30
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RoundingMethod: Floor

OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision
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fimath ProductMode and SumMode

In this section...

“Example Setup” on page 4-26
“FullPrecision” on page 4-27
“KeepLSB” on page 4-28
“KeepMSB” on page 4-29
“SpecifyPrecision” on page 4-30

Example Setup

The examples in the sections of this topic show the differences among the four settings of
the ProductMode and SumMode properties:

* FullPrecision

* KeeplLSB

* KeepMSB

* SpecifyPrecision

To follow along, first set the following preferences:

p = fipref;

p-NumericTypeDisplay = "short”;

p-FimathDisplay = "none”;

p-LoggingMode = "on";

F = fimath("OverflowAction®, "Wrap”, . ..
"RoundingMethod®, "Floor~®, ...
"CastBeforeSum” ,false);

warning off

format compact

Next, define Fi objects a and b. Both have signed 8-bit data types. The fraction length
gets chosen automatically for each Fi object to yield the best possible precision:

a = fi(pi, true, 8)
a =

3.1563
s8,5
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b = fi(exp(1), true, 8)
b =
2.7188
s8,5

FullPrecision

Now, set ProductMode and SumMode for a and b to Ful IPrecision and look at some
results:

F.ProductMode = "FullPrecision”;
F.SumMode = "FullPrecision”;

a.fimath F;
b
a

. fimath F;

a =
3.1563 %011.00101
s8,5

2.7188 %010.10111
s8,5

a*b

ans
8.5811 %001000.1001010011
s16,10

a+b

ans
5.8750 %0101.11100
s9,5

In FullPrecision mode, the product word length grows to the sum of the word lengths
of the operands. In this case, each operand has 8 bits, so the product word length is 16
bits. The product fraction length is the sum of the fraction lengths of the operands, in this
case 5 + 5 =10 bits.

The sum word length grows by one most significant bit to accommodate the possibility of
a carry bit. The sum fraction length aligns with the fraction lengths of the operands, and
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all fractional bits are kept for full precision. In this case, both operands have 5 fractional
bits, so the sum has 5 fractional bits.

KeepLSB

Now, set ProductMode and SumMode for a and b to KeepLSB and look at some results:

F.ProductMode = "KeepLSB";
F.ProductWordLength = 12;
F.SumMode = "KeepLSB";
F.SumWordLength = 12;
a.fimath = F;
b.fimath = F;
a
a =
3.1563 %011.00101
s8,5
b
b =
2.7188 %010.10111
s8,5
a*b
ans =
0.5811 %00.1001010011
sl12,10
a+b
ans =

5.8750 %0000101.11100
s12,5

In KeepLSB mode, you specify the word lengths and the least significant bits of results
are automatically kept. This mode models the behavior of integer operations in the C
language.

The product fraction length is the sum of the fraction lengths of the operands. In this
case, each operand has 5 fractional bits, so the product fraction length is 10 bits. In this
mode, all 10 fractional bits are kept. Overflow occurs because the full-precision result
requires 6 integer bits, and only 2 integer bits remain in the product.
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The sum fraction length aligns with the fraction lengths of the operands, and in this
model all least significant bits are kept. In this case, both operands had 5 fractional bits,
so the sum has 5 fractional bits. The full-precision result requires 4 integer bits, and 7
integer bits remain in the sum, so no overflow occurs in the sum.

KeepMSB

Now, set ProductMode and SumMode for a and b to KeepMSB and look at some results:

F.ProductMode = "KeepMSB";
F.ProductWordLength = 12;
F.SumMode = "KeepMSB";
F.SumWordLength = 12;
a.fimath = F;
b.fimath = F;
a
a =
3.1563 %011.00101
s8,5
b
b =
2.7188 %010.10111
s8,5
a*b
ans =
8.5781 %001000.100101
sl2,6
a+b
ans =

5.8750 %0101.11100000
s12,8

In KeepMSB mode, you specify the word lengths and the most significant bits of sum
and product results are automatically kept. This mode models the behavior of many
DSP devices where the product and sum are kept in double-wide registers, and the
programmer chooses to transfer the most significant bits from the registers to memory
after each operation.
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4-30

The full-precision product requires 6 integer bits, and the fraction length of the product
is adjusted to accommodate all 6 integer bits in this mode. No overflow occurs. However,
the full-precision product requires 10 fractional bits, and only 6 are available. Therefore,
precision is lost.

The full-precision sum requires 4 integer bits, and the fraction length of the sum is
adjusted to accommodate all 4 integer bits in this mode. The full-precision sum requires
only 5 fractional bits; in this case there are 8, so there is no loss of precision.

This example shows that, in KeepMSB mode the fraction length changes regardless of
whether an overflow occurs. The fraction length is set to the amount needed to represent
the product in case both terms use the maximum possible value (18+18-16=20 in this
example).

F = fimath("SumMode*®, "KeepMSB*", "ProductMode®, "KeepMSB*", . ..
"ProductWordLength®,16, "SumWordLength®,16);
a = fi(100,1,16,-2, " fFimath",F);

a*a
ans =
0
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: -20
RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: KeepMSB
ProductWordLength: 16
SumMode: KeepMSB
SumWordLength: 16
CastBeforeSum: true
SpecifyPrecision

Now set ProductMode and SumMode for a and b to SpecifyPrecision and look at
some results:

F_ProductMode = "SpecifyPrecision”;
F_ProductWordLength = 8;
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F_ProductFractionLength = 7;
F_SumMode = “SpecifyPrecision”®;
F_SumWordLength = 8;
F_SumFractionLength = 7;
a.fimath = F;
b.fimath = F;
a
a:
3.1563 %011.00101
s8,5
b
b =
2.7188 %010.10111
s8,5
a*b
ans =
0.5781 %0.1001010
s8,7
a+b
ans =

-0.1250 %1.1110000
s8,7

In SpecifyPrecision mode, you must specify both word length and fraction length for
sums and products. This example unwisely uses fractional formats for the products and
sums, with 8-bit word lengths and 7-bit fraction lengths.

The full-precision product requires 6 integer bits, and the example specifies only 1, so the
product overflows. The full-precision product requires 10 fractional bits, and the example
only specifies 7, so there is precision loss in the product.

The full-precision sum requires 4 integer bits, and the example specifies only 1, so
the sum overflows. The full-precision sum requires 5 fractional bits, and the example
specifies 7, so there is no loss of precision in the sum.

For more information about the Fimath object and its properties, see “fimath Object
Properties” on page 4-5
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How Functions Use fimath

4-32

In this section...

“Functions that use then discard attached fimath” on page 4-32

“Functions that ignore and discard attached fimath” on page 4-32

“Functions that do not perform math” on page 4-33

Functions that use then discard attached fimath

Functions

Note

conv, Filter

Error if attached Fimaths differ.

mean, median

Functions that ignore and discard attached fimath

Functions

Note

accumneg, accumpos

* By default, use Floor rounding method
and Wrap overflow

add, sub, mpy

* Override and discard any fimath
objects attached to the input Fi objects

+ Uses the Fimath from input, F, as in
add(F, a, b)

CORDIC functions — cordicabs,
cordicangle, cordicatan2,
cordiccart2pol, cordiccexp,
cordiccos, cordicpol2cart,
cordicrotate, cordicsin,
cordicsincos, cordicsqgrt

CORDIC functions use their own internal
fimath:

*  Rounding Mode — Floor
*  Overflow Action — Wrap

mod

qr

quantize

Uses the math settings on the quantizer
object, ignores and discards any Fimath
settings on the input
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Functions Note
Trigonometric functions — atan2, cos, —
sin

Functions that do not perform math
Functions Note

Built-in Types—int32, int64, int8,
uintl6, uint32, uint64, uint8

Ignore any Fimath settings on the input.
Always use the rounding method Round
when casting to the new data type. The
output is not a Fi object so it has no
attached Fimath.

bitsll, bitsra, bitsrl

OverflowAction and RoundingMethod
are ignored — bits drop off the end.

bitshift

RoundingMethod is ignored, but
OverflowAction property is obeyed.
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* “Data Type Override Preferences Using fipref” on page 5-12



5 Working with fipref Objects

fipref Object Construction

The Fipref object defines the display and logging attributes for all Fi objects. You can
use the Fipref constructor function to create a new object.

To get started, type
P = Fipref

to create a default Fipref object.

P =
NumberDisplay: “RealWorldvalue®
NumericTypeDisplay: “full*
FimathDisplay: “full®
LoggingMode: “Off*
DataTypeOverride: “ForceOff*
The syntax

P = Fipref(..."PropertyName®", "PropertyValue®...)

allows you to set properties for a Fipref object at object creation with property name/
property value pairs.

Your Fipref settings persist throughout your MATLAB session. Use reset(fipref) to
return to the default settings during your session. Use saveFfipref to save your display
preferences for subsequent MATLAB sessions.
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fipref Object Properties

In this section...

“Display, Data Type Override, and Logging Properties” on page 5-3

“fipref Object Properties Setting” on page 5-3

Display, Data Type Override, and Logging Properties

The following properties of Fipref objects are always writable:

+ FimathDisplay — Display options for the local Fimath attributes of a i object
+ DataTypeOverride — Data type override options
+ LoggingMode — Logging options for operations performed on Fi objects

* NumericTypeDisplay — Display options for the numeric type attributes of a Fi
object

* NumberDisplay — Display options for the value of a Fi object
These properties are described in detail in the “fi Object Properties” on page 2-18. To

learn how to specify properties for Fipref objects in Fixed-Point Designer software, refer
to “fipref Object Properties Setting” on page 5-3.

fipref Object Properties Setting
Setting fipref Properties at Object Creation

You can set properties of Fipref objects at the time of object creation by including
properties after the arguments of the Fipref constructor function. For example, to set
NumberDisplay to bin and NumericTypeDisplay to short,

P = fipref("NumberDisplay”, "bin-",

"NumericTypeDisplay®, "short®)

NumberDisplay: "bin®
NumericTypeDisplay: "short®
FimathDisplay: “full®
LoggingMode: “Off*
DataTypeOverride: "ForceOff*
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Using Direct Property Referencing with fipref

You can reference directly into a property for setting or retrieving fipref object
property values using MATLAB structure-like referencing. You do this by using a period
to index into a property by name.

For example, to get the NumberDisplay of P,
P_NumberDisplay
ans =
bin
To set the NumericTypeDisplay of P,
P_NumericTypeDisplay = "full*
P =
NumberDisplay: "bin®
NumericTypeDisplay: “full*
FimathDisplay: “full®

LoggingMode: “Off*
DataTypeOverride: “ForceOff*

5-4



fi Object Display Preferences Using fipref

fi Object Display Preferences Using fipref

You use the Fipref object to specify three aspects of the display of i objects: the object
value, the local Fimath properties, and the numerictype properties.

For example, the following code shows the default Fipref display for a Fi object with a

local Fimath object:

a = Fi(pi, "RoundingMethod®, “Floor®", "OverflowAction®, “Wrap®)
a =
3.1415
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13
RoundingMethod: Floor
OverflowAction: Wrap
ProductMode: FullPrecision
SumMode: FullPrecision

The default Fipref display for a i object with no local fimath is as follows:

a = fi(pi)
a =
3.1416
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

Next, change the Fipref display properties:

P = fipref;

P_NumberDisplay = "bin";
P_NumericTypeDisplay = "short”;
P_FimathDisplay = "none*
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P =
NumberDisplay: "bin®
NumericTypeDisplay: "short®
FimathDisplay: "none*
LoggingMode: “Off*
DataTypeOverride: "ForceOff*
a
a =
0110010010000111

s16,13

For more information on the default Fipref display, see “View Fixed-Point Data”.
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Underflow and Overflow Logging Using fipref

In this section...

“Logging Overflows and Underflows as Warnings” on page 5-7

“Accessing Logged Information with Functions” on page 5-9

Logging Overflows and Underflows as Warnings

Overflows and underflows are logged as warnings for all assignment, plus, minus, and
multiplication operations when the Fipref LoggingMode property is set to on. For
example, try the following:

1

Create a signed Ti object that is a vector of values from 1 to 5, with 8-bit word length
and 6-bit fraction length.

a = fi(1:5,1,8,6);
Define the Fimath object associated with a, and indicate that you will specify the
sum and product word and fraction lengths.

F = a.fimath;

F.SumMode = "SpecifyPrecision”;
F.ProductMode = "SpecifyPrecision”;
a.fimath = F;

Define the Fipref object and turn on overflow and underflow logging.
P = fipref;

P.LoggingMode = "on";

Suppress the numerictype and fimath displays.
P_NumericTypeDisplay = "none”;

P_FimathDisplay = "none”;

Specify the sum and product word and fraction lengths.
a.SumWordLength = 16;

a.SumFractionLength = 15;

a.ProductWordLength = 16;
a.ProductFractionLength = 15;

Warnings are displayed for overflows and underflows in assignment operations. For
example, try:
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a(1l) = pi
Warning: 1 overflow occurred in the fi assignment operation.

a =
1.9844 1.9844 1.9844 1.9844 1.9844

a(1l) = double(eps(a))/10
Warning: 1 underflow occurred in the fi assignment operation.

a =

0 1.9844 1.9844 1.9844 1.9844

Warnings are displayed for overflows and underflows in addition and subtraction
operations. For example, try:

a+a
Warning: 12 overflows occurred in the fi + operation.

ans =
0 1.0000 1.0000 1.0000 1.0000

a-a
Warning: 8 overflows occurred in the fi - operation.

ans =

0 0 0 0 0

Warnings are displayed for overflows and underflows in multiplication operations.
For example, try:

a.*a
Warning: 4 product overflows occurred in the fi .* operation.

ans =

(0] 1.0000 1.0000 1.0000 1.0000
a*a”
Warning: 4 product overflows occurred in the fi * operation.
Warning: 3 sum overflows occurred in the fi * operation.
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ans =
1.0000

The final example above is a complex multiplication that requires both multiplication
and addition operations. The warnings inform you of overflows and underflows in both.

Because overflows and underflows are logged as warnings, you can use the dbstop
MATLAB function with the syntax

dbstop if warning

to find the exact lines in a file that are causing overflows or underflows.
Use

dbstop if warning fi:underflow

to stop only on lines that cause an underflow. Use

dbstop if warning fi:overflow

to stop only on lines that cause an overflow.

Accessing Logged Information with Functions

When the Fipref LoggingMode property is set to on, you can use the following

functions to return logged information about assignment and creation operations to the
MATLAB command line:

+ maxlog — Returns the maximum real-world value
+ minlog — Returns the minimum value
+ noverflows — Returns the number of overflows

* nunderflows — Returns the number of underflows

LoggingMode must be set to on before you perform any operation in order to log
information about it. To clear the log, use the function resetlog.

For example, consider the following. First turn logging on, then perform operations, and
then finally get information about the operations:

fipref(“LoggingMode®,"on");
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x = Fi([-1.5 eps 0.5], true, 16, 15);

x(1) = 3.0;
maxlog(x)
ans =
1.0000
minlog(x)
ans =
-1
noverflows(x)
ans =
2
nunderflows(x)
ans =
1

Next, reset the log and request the same information again. Note that the functions
return empty [], because logging has been reset since the operations were run:

resetlog(x)
maxlog(x)

ans =
1
minlog(x)
ans =
1
noverflows(x)

ans =
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1
nunderflows(x)
ans =

1
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Data Type Override Preferences Using fipref

5-12

In this section...

“Overriding the Data Type of fi Objects” on page 5-12
“Data Type Override for Fixed-Point Scaling” on page 5-13

Overriding the Data Type of fi Objects

Use the Fipref DataTypeOverride property to override Fi objects with singles,
doubles, or scaled doubles. Data type override only occurs when the Fi constructor
function is called. Objects that are created while data type override is on have the
overridden data type. They maintain that data type when data type override is later
turned off. To obtain an object with a data type that is not the override data type, you
must create an object when data type override is off:

p = fipref("DataTypeOverride®, "TrueDoubles®)
p:
NumberDisplay: “RealWorldvValue®
NumericTypeDisplay: “full*
FimathDisplay: “full®
LoggingMode: “Off*
DataTypeOverride: "TrueDoubles®
a = fi(pi)
a =
3.1416
DataTypeMode: Double
p = fipref("DataTypeOverride®, "ForceOff")
p:

NumberDisplay: "RealWorldvValue®
NumericTypeDisplay: “full*
FimathDisplay: “full®
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LoggingMode: “Off*
DataTypeOverride: "ForceOff*

3.1416

DataTypeMode: Double

fi(pi)

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16
FractionLength: 13

Tip To reset the Fipref object to its default values use reset(Fipref) or reset(p),
where p is a FipreT object. This is useful to ensure that data type override and logging
are off.

Data Type Override for Fixed-Point Scaling

Choosing the scaling for the fixed-point variables in your algorithms can be difficult. In
Fixed-Point Designer software, you can use a combination of data type override and min/
max logging to help you discover the numerical ranges that your fixed-point data types
need to cover. These ranges dictate the appropriate scalings for your fixed-point data
types. In general, the procedure is

1

2

Implement your algorithm using fixed-point Fi objects, using initial “best guesses”
for word lengths and scalings.

Set the Fipref DataTypeOverride property to ScaledDoubles, TrueSingles, or
TrueDoubles.

Set the Fipref LoggingMode property to on.

Use the maxlog and minlog functions to log the maximum and minimum values
achieved by the variables in your algorithm in floating-point mode.
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5 Set the Fipref DataTypeOverride property to ForceOff.

6 Use the information obtained in step 4 to set the fixed-point scaling for each
variable in your algorithm such that the full numerical range of each variable is
representable by its data type and scaling.

A detailed example of this process is shown in the Fixed-Point Designer Setting Fixed-
Point Data Types Using Min/Max Instrumentation example.
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numerictype Object Construction

In this section...

“numerictype Object Syntaxes” on page 6-2

“Example: Construct a numerictype Object with Property Name and Property Value
Pairs” on page 6-3

“Example: Copy a numerictype Object” on page 6-4

“Example: Build numerictype Object Constructors in a GUI” on page 6-4

numerictype Object Syntaxes

numerictype objects define the data type and scaling attributes of Fi objects, as well as
Simulink signals and model parameters. You can create numer ictype objects in Fixed-
Point Designer software in one of two ways:

* You can use the numerictype constructor function to create a new object.

* You can use the numerictype constructor function to copy an existing numerictype
object.

To get started, type
T = numerictype
to create a default numerictype object.
T =
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 16
FractionLength: 15

To see all of the numerictype object syntaxes, refer to the numerictype constructor
function reference page.

The following examples show different ways of constructing numerictype objects.
For more examples of constructing numer ictype objects, see the “Examples” on the
numer ictype constructor function reference page.
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Example: Construct a numerictype Object with Property Name and
Property Value Pairs

When you create a numerictype object using property name and property value pairs,
Fixed-Point Designer software first creates a default numerictype object, and then, for
each property name you specify in the constructor, assigns the corresponding value.

This behavior differs from the behavior that occurs when you use a syntax such as T

= numerictype(s,w), where you only specify the property values in the constructor.
Using such a syntax results in no default numerictype object being created, and the
numer ictype object receives only the assigned property values that are specified in the
constructor.

The following example shows how the property name/property value syntax creates a
slightly different numerictype object than the property values syntax, even when you
specify the same property values in both constructors.

To demonstrate this difference, suppose you want to create an unsigned numerictype
object with a word length of 32 bits.

First, create the numerictype object using property name/property value pairs.
T1l = numerictype("Signed”,0, "WordLength~",32)

T1 =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Unsigned
WordLength: 32
FractionLength: 15

The numerictype object T1 has the same DataTypeMode and FractionLength
as a default numerictype object, but the WordLength and Signed properties are
overwritten with the values you specified.

Now, create another unsigned 32 bit numerictype object, but this time specify only
property values in the constructor.

T2 = numerictype(0,32)

T2 =
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DataTypeMode: Fixed-point: unspecified scaling
Signedness: Unsigned
WordLength: 32

Unlike T1, T2 only has the property values you specified. The DataTypeMode of T2 is
Fixed-Point: unspecified scaling, so no fraction length is assigned.

T objects cannot have unspecified numerictype properties. Thus, all unspecified
numer ictype object properties become specified at the time of Fi object creation.

Example: Copy a numerictype Object

To copy a numerictype object, simply use assignment as in the following example:

T = numerictype;
Uu=rT;
isequal(T,U)

ans =

Example: Build numerictype Object Constructors in a GUI

When you are working with files in MATLAB, you can build your numerictype

object constructors using the Insert numerictype Constructor dialog box. After
specifying the properties of the numerictype object in the dialog box, you can insert the
prepopulated numerictype object constructor at a specific location in your file.

For example, to create a signed humerictype object with binary-point scaling, a word
length of 32 bits and a fraction length of 30 bits, perform the following steps:

1 On the Home tab, in the File section, click New > Script to open the MATLAB
Editor

el -
On the Editor tab, in the Edit section, click in the Insert button group.
Click the Insert numerictype... to open the Insert numerictype Constructor
dialog box.

3  Use the edit boxes and drop-down menus to specify the following properties of the
numer ictype object:
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+ Data type mode = Fixed-point: binary point scaling
+ Signedness = Signed

Word length = 32
* Fraction length = 30

A\ Insert numerictype Constructor = 2
Data type mode: :Fixed-pﬂ-int: binary point scaling -
Signedness: :Signed v:

Word length: 32

Fraction length: |30

ok || cance || Hep

L A

To insert the numerictype object constructor in your file, place your cursor at the
desired location in the file, and click OK on the Insert numerictype Constructor
dialog box. Clicking OK closes the Insert numerictype Constructor dialog box
and automatically populates the numerictype object constructor in your file:

5 T = numerictypsi(l, 32, 30)
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numerictype Object Properties

In this section...

“How Properties are Related” on page 6-9

“Data Type and Scaling Properties” on page 6-6

“Set numerictype Object Properties” on page 6-10

Data Type and Scaling Properties

All properties of a numerictype object are writable. However, the numerictype
properties of a Fi object become read only after the Fi object has been created. Any
numerictype properties of a Fi object that are unspecified at the time of Fi object
creation are automatically set to their default values. The properties of a numerictype

object are:

Property Description

Valid Values

Bias Bias associated with the object.
Along with the slope, the bias

number.

forms the scaling of a fixed-point

Any floating-point number

DataType Data type category

Fixed (default) — Fixed-point or integer data
type

boolean — Built-in MATLAB boolean data
type

double — Built-in MATLAB double data
type

ScaledDouble — Scaled double data type
single — Built-in MATLAB single data
type

with the object

6-6

DataTypeMod|Data type and scaling associated

Fixed-point: binary point scaling
(default) — Fixed-point data type and scaling
defined by the word length and fraction length

Boolean — Built-in boolean
Double — Built-in double
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Property Description Valid Values
+ Fixed-point: slope and bias scaling
— Fixed-point data type and scaling defined
by the slope and bias
* Fixed-point: unspecified scaling —
Fixed-point data type with unspecified scaling
+ Scaled double: binary point scaling
— Double data type with fixed-point word
length and fraction length information
retained
+ Scaled double: slope and bias
scaling — Double data type with fixed-point
slope and bias information retained
+ Scaled double: unspecified scaling
— Double data type with unspecified fixed-
point scaling
+ Single — Built-in single
FixedExpone|Fixed-point exponent associated |* Any integer
with the object
Note: The FixedExponent property is the
negative of the FractionLength. Changing one
property changes the other.
FractionlLen|Fraction length of the stored *  Best precision fraction length based on value

integer value, in bits

of the object and the word length (default)
* Any integer

Note: The FractionLength property is the
negative of the FixedExponent. Changing one
property changes the other.
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Property Description Valid Values
Scaling Scaling mode of the object + BinaryPoint (default) — Scaling for the i
object is defined by the fraction length.

+ SlopeBias — Scaling for the Fi object is
defined by the slope and bias.

+ Unspecified — A temporary setting that is
only allowed at Fi object creation, to allow for
the automatic assignment of a binary point
best-precision scaling.

Signed Whether the object is signed +  true (default) — signed

+ False — unsigned

Note: Although the Signed + 1 —signed

property is still supported, the |. 0 — unsigned

Slgnedness property_ always + []— auto

appears in the numerictype

object display. If you choose to

change or set the signedness of

your humer ictype objects using

the Signed property, MATLAB

updates the corresponding value

of the Signedness property.
Signedness |Whether the object is signed, + Signed (default)

u'nsigned, or has an unspecified |, Unsigned

sign 1

*  Auto — unspecified sign

Slope Slope associated with the object |* Any floating-point number

Along with the bias, the slope

forms the scaling of a fixed-point | Note:

number.

slope = slope adjustment factorx 2/xed exwonent

Changing one of these properties changes the

other.
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Property

Description

Valid Values

Slope

Slope adjustment associated

AdjustmentF| with the object

The slope adjustment is
equivalent to the fractional slope
of a fixed-point number.

*  Any number greater than or equal to 1 and
less than 2

Note:
slope = slope adjustment factorx 2/xed exwonent

Changing one of these properties changes the
other.

WordLength |Word length of the stored

integer value, in bits

+ 16 (default)

* Any positive integer if Signedness is
Unsigned or unspecified

* Any integer greater than one if Signedness
is set to Signed

These properties are described in detail in the “fi Object Properties” on page 2-18.
To learn how to specify properties for numerictype objects in Fixed-Point Designer
software, refer to “Set numerictype Object Properties” on page 6-10.

How Properties are Related

Properties that affect the slope

The Slope field of the numerictype object is related to the SlopeAdjustmentFactor

and FixedExponent properties by

slope = slope adjustment factorx 2/e¢d exonent

The FixedExponent and FractionlLength properties are related by

fixed exponent = — fraction length

If you set the SlopeAdjustmentFactor, FixedExponent, or FractionLength

property, the Slope field is modified.
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Stored integer value and real world value

In binary point scaling the numerictype StoredIntegerValue and RealWorldvalue
properties are related according to

real-world value = stored integer valuex 27 ctionlensih
In [Slope Bias] scaling the RealWor ldValue can be represented by

real-world value =

stored integer value X (slope adjustment factorx 27%¢d €Ponenty  pigg
which is equivalent to
real-world value = (slopex stored integer) + bias
If any of these properties are updated, the others are modified accordingly.
Set numerictype Object Properties

Setting numerictype Properties at Object Creation

You can set properties of numerictype objects at the time of object creation by including
properties after the arguments of the numerictype constructor function.

For example, to set the word length to 32 bits and the fraction length to 30 bits,

T numerictype(“WordLength®, 32, "FractionLength®, 30)

T =

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 30

In addition to creating a numerictype object at the command line, you can also set
numer ictype properties using the Insert numerictype Constructor dialog box. For
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an example of this approach, see “Example: Build numerictype Object Constructors in a
GUTI” on page 6-4.

Use Direct Property Referencing with numerictype Objects

You can reference directly into a property for setting or retrieving numer ictype object
property values using MATLAB structure-like referencing. You do this by using a period
to index into a property by name.

For example, to get the word length of T,
T.WordLength
ans =
32
To set the fraction length of T,
T.FractionLength = 31
T =
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed

WordLength: 32
FractionLength: 31
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numerictype of Fixed-Point Objects

In this section...

“Valid Values for numerictype Object Properties” on page 6-12
“Properties That Affect the Slope” on page 6-14
“Stored Integer Value and Real World Value” on page 6-14

Valid Values for numerictype Obiject Properties

The numerictype object contains all the data type and scaling attributes of a fixed-point
object. The numerictype object behaves like any MATLAB object, except that it only

lets you set valid values for defined fields. The following table shows the possible settings
of each field of the object.

Note When you create a Fi object, any unspecified field of the numerictype object
reverts to its default value. Thus, if the DataTypeMode is set to unspecified
scaling, it defaults to binary point scaling when the Fi object is created. If the
Signedness property of the numerictype object is set to Auto, it defaults to Signed
when the Fi object is created.

DataTypeMode  |DataType Scaling Signedness  |Word- |Fraction- |Slope Bias
Length |Length
Fixed-point data types
Fixed-point: |Fixed BinaryPoiniSigned Positive | Positive |2(- 0
binary point Unsigned integer |or fraction
scaling Auto from negative |length)
1to integer
65,535
Fixed-point: |Fixed SlopeBias |Signed Positive [N/A Any Any
slope and Unsigned integer floating- |floating-
bias scaling Auto from point point
1to number |[number
65,535

6-12




numerictype of Fixed-Point Objects

DataTypeMode | DataType Scaling Signedness  |Word- |Fraction- |Slope Bias
Length |Length
Fixed-point: |Fixed Unspecifie(Signed Positive [N/A N/A N/A
unspecified Unsigned integer
scaling Auto from
1to
65,535
Scaled double data types
Scaled ScaledDoubl{BinaryPoiniSigned Positive | Positive |2(- 0
double: Unsigned integer |or fraction
binary point Auto from negative |length)
scaling 1to integer
65,535
Scaled ScaledDoubl{SlopeBias |Signed Positive [N/A Any Any
double: slope Unsigned integer floating- |floating-
and bias Auto from point point
scaling 1to number |[number
65,535
Scaled ScaledDoubl{Unspecifie(Signed Positive [N/A N/A N/A
double: Unsigned integer
unspecified Auto from
scaling 1to
65,535
Built-in data types
Double double N/ZA 1 64 0] 1 0]
true
Single single N/ZA 1 32 0] 1 0]
true
Boolean boolean N/ZA 0 1 0] 1 0
false

You cannot change the numerictype properties of a Fi object after Fi object creation.
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Properties That Affect the Slope

The Slope field of the numerictype object is related to the SlopeAdjustmentFactor
and FixedExponent properties by

slope = slope adjustment factorx 2/ed exponent
The FixedExponent and FractionLength properties are related by
fixed exponent = — fraction length

If you set the SlopeAdjustmentFactor, FixedExponent, or FractionLength
property, the Slope field is modified.

Stored Integer Value and Real World Value

In binary point scaling the numerictype StoredIntegerValue and RealWorldvalue
properties are related according to

real-world value = stored integer valuex 27 actionlensth

In [Slope Bias] scaling the RealWor ldValue can be represented by

real-world value =

stored integer value x (slope adjustment factorx2/™ed eponenty | pigg
which is equivalent to
real-world value = (slopex stored integer) + bias

If any of these properties are updated, the others are modified accordingly.
For more detail on these properties see “numerictype Object Properties” on page 6-6.

For more information on scaling see “Data Types and Scaling”
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numerictype Objects Usage to Share Data Type and Scaling
Settings of fi objects

You can use a numerictype object to define common data type and scaling rules that
you would like to use for many Fi objects. You can then create multiple i objects, using
the same numerictype object for each.

Example 1

In the following example, you create a numerictype object T with word length 32 and
fraction length 28. Next, to ensure that your Fi objects have the same numerictype
attributes, create Fi objects a and b using your humerictype object T.

format long g
T = numerictype(“WordLength®",32, "FractionLength®,b28)

T =
DataTypeMode: Fixed-point: binary point scaling
Signedness: Signhed
WordLength: 32
FractionLength: 28
a = Fi(pi,T)
a =

3.1415926553309

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 32
FractionLength: 28

b = fi(pi/2, T)

1.5707963258028

6-15
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DataTypeMode:
Signedness:
WordLength:

FractionLength:

Example 2

Fixed-point: binary point scaling
Signed

32

28

In this example, start by creating a numerictype object T with [Slope Bias] scaling.
Next, use that object to create two Fi objects, ¢ and d with the same numerictype

attributes:
T =
T =
DataTypeMode:
Signedness:
WordLength:
Slope:
Bias:
c = fi(pi, T)
CcC =
4
DataTypeMode:
Signedness:
WordLength:
Slope:
Bias:
d = fi(pi/2, T)
d =
0
DataTypeMode:
Signedness:
WordLength:
Slope:
Bias:

6-16

numerictype(“Scaling”, "slopebias”, "Slope”, 272, "Bias", 0)

Fixed-point: slope and bias scaling
Signed

16

21n2

0

Fixed-point: slope and bias scaling
Signed

16

21n2

0

Fixed-point: slope and bias scaling
Signed

16

212

0
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For more detail on the properties of numerictype objects see “numerictype Object
Properties” on page 6-6.
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Constructing quantizer Objects

You can use quantizer objects to quantize data sets. You can create quantizer objects

in Fixed-Point Designer software in one of two ways:

* You can use the quantizer constructor function to create a new object.

* You can use the quantizer constructor function to copy a quantizer object.

To create a quantizer object with default properties, type

q = quantizer
q:

DataMode = fixed
RoundingMethod = Floor
OverflowAction = Saturate

Format = [16 15]

To copy a quantizer object, simply use assignment as in the following example:
q = quantizer;
r=gq;
isequal(q,r)

ans =

1

A listing of all the properties of the quantizer object q you just created is displayed
along with the associated property values. All property values are set to defaults when
you construct a quantizer object this way. See “quantizer Object Properties” on page
7-3 for more details.
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quantizer Object Properties

The following properties of quantizer objects are always writable:

+ DataMode — Type of arithmetic used in quantization
* Format — Data format of a quantizer object

+ OverflowAction — Action to take on overflow

* RoundingMethod — Rounding method

See the“fi Object Properties” on page 2-18 for more details about these properties,
including their possible values.

For example, to create a fixed-point quantizer object with

* The Format property value set to [16,14]

+ The OverflowAction property value set to "Saturate”
*  The RoundingMethod property value set to "Ceiling”
type

q = quantizer(“datamode®,"fixed","format”,[16,14],---
"OverflowMode®, "saturate”, "RoundMode*®, "ceil®)

You do not have to include quantizer object property names when you set quantizer
object property values.

For example, you can create quantizer object g from the previous example by typing

g = quantizer(“fixed",[16,14], "saturate”, “"ceil")

Note You do not have to include default property values when you construct a
quantizer object. In this example, you could leave out "fixed" and "saturate”.
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Quantizing Data with quantizer Obijects

You construct a quantizer object to specify the quantization parameters to use when
you quantize data sets. You can use the quantize function to quantize data according to
a quantizer object's specifications.

Once you quantize data with a quantizer object, its state values might change.

The following example shows

How you use quantize to quantize data
How quantization affects quantizer object states

How you reset quantizer object states to their default values using reset
Construct an example data set and a quantizer object.

format long g
rng(“default®);

X = randn(100,4);

q = quantizer([16,14]);

Retrieve the values of the maxlog and noverflows states.
g.-maxlog
ans =
-1.79769313486232e+308
g-noverflows
ans =
0

Note that maxlog is equal to -realmax, which indicates that the quantizer q is in a
reset state.

Quantize the data set according to the quantizer object's specifications.
y = quantize(q,x);
Warning: 626 overflow(s) occurred in the fi quantize operation.

Check the values of maxlog and noverflows.
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q-maxlog
ans =
1.99993896484375
q-noverflows
ans =
626

Note that the maximum logged value was taken after quantization, that is,
g-maxlog == max(y).

Reset the quantizer states and check them.

reset(q)
g.-maxlog

ans =
-1.79769313486232e+308
g-noverflows

ans =
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Transformations for Quantized Data

You can convert data values from numeric to hexadecimal or binary according to a
quantizer object's specifications.

Use

* num2bin to convert data to binary
*+ num2hex to convert data to hexadecimal
* hex2num to convert hexadecimal data to numeric

*  bin2num to convert binary data to numeric

For example,

g = quantizer([3 2]);

x = [0.75 -0.25
0.50 -0.50
0.25 -0.75

0 -17;

b = num2bin(qg,x)

b =

011

010

001

000

111

110

101

100

produces all two's complement fractional representations of 3-bit fixed-point numbers.
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Fixed-Point Conversion Workflows

8-2

In this section...

“Choosing a Conversion Workflow” on page 8-2
“Automated Workflow” on page 8-3
“Manual Workflow” on page 8-3

Choosing a Conversion Workflow

MathWorks® provides a number of solutions for fixed-point conversion. Which conversion
method you use depends on your end goal and your level of fixed-point expertise.

Godl Conversion Method See Also
Use generated fixed- If you are new to fixed-point | “Automated Workflow” on
point MATLAB code for modeling, use the Fixed- page 8-3

simulation purposes.

Point Converter app.

If you are familiar with
fixed-point modeling, and
want to quickly explore
design tradeoffs, convert
your code manually.

“Manual Workflow” on page
8-3

Generate fixed-point C
code (requires MATLAB
Coder™)

MATLAB Coder Fixed-Point
Conversion tool

“Convert MATLAB Code to
Fixed-Point C Code”

Generated HDL code
(requires HDL Coder™)

HDL Coder Workflow
Advisor

“Floating-Point to Fixed-
Point Conversion”

Integrate fixed-point
MATLAB code in larger
applications for system-level
simulation.

Generate a MEX function
from the fixed-point
algorithm and call the MEX
function instead of the
original MATLAB function.

“Propose Data Types Based
on Simulation Ranges” on
page 9-15 and “Propose
Data Types Based on
Derived Ranges” on page
9-29




Fixed-Point Conversion Workflows

Automated Workflow

If you are new to fixed-point modeling and you are looking for a direct path from floating-
point MATLAB to fixed-point MATLAB code, use the automated workflow. Using this
automated workflow, you can obtain data type proposals based on simulation ranges,
static ranges, or both. For more information, see “Automated Fixed-Point Conversion” on
page 8-4, “Propose Data Types Based on Simulation Ranges” on page 9-15, and

“Propose Data Types Based on Derived Ranges” on page 9-29.

Manual Workflow

If you have a baseline understanding of fixed-point implementation details and an
interest in exploring design tradeoffs to achieve optimized results, use the separate
algorithm/data type workflow. Separating algorithmic code from data type specifications
allows you to quickly explore design tradeoffs. This approach provides readable, portable
fixed-point code that you can easily integrated into other projects. For more information,
see “Manual Fixed-Point Conversion Workflow” on page 12-2 and “Implement FIR

Filter Algorithm for Floating-Point and Fixed-Point Types using cast and zeros” on page
12-19.
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Automated Fixed-Point Conversion

8-4

In this section...

“Automated Fixed-Point Conversion Capabilities” on page 8-4
“Code Coverage” on page 8-5

“Proposing Data Types” on page 8-9

“Locking Proposed Data Types” on page 8-11

“Viewing Functions” on page 8-11

“Viewing Variables” on page 8-18

“Log Data for Histogram” on page 8-20

“Function Replacements” on page 8-22

“Validating Types” on page 8-23

“Testing Numerics” on page 8-23

“Detecting Overflows” on page 8-24

Automated Fixed-Point Conversion Capabilities

You can convert floating-point MATLAB code to fixed-point code using the Fixed-Point
Converter app or at the command line using the Fiaccel function -float2fixed
option. You can choose to propose data types based on simulation range data, derived
(also known as static) range data, or both.

You can manually enter static ranges. These manually entered ranges take precedence
over simulation ranges and the app uses them when proposing data types. In addition,
you can modify and lock the proposed type so that the app cannot change it. For more
information, see “Locking Proposed Data Types” on page 8-11.

For a list of supported MATLAB features and functions, see “MATLAB Language
Features Supported for Automated Fixed-Point Conversion” on page 8-42.

During fixed-point conversion, you can:

+ Verify that your test files cover the full intended operating range of your algorithm
using code coverage results.

+ Propose fraction lengths based on default word lengths.
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*  Propose word lengths based on default fraction lengths.

*  Optimize whole numbers.

+  Specify safety margins for simulation min/max data.

+ Validate that you can build your project with the proposed data types.

*  Test numerics by running the test file with the fixed-point types applied.
* View a histogram of bits that each variable uses.

* Detect overflows.

Code Coverage

By default, the app shows code coverage results. Your test files must exercise the
algorithm over its full operating range so that the simulation ranges are accurate. The
quality of the proposed fixed-point data types depends on how well the test files cover the
operating range of the algorithm with the accuracy that you want.

Reviewing code coverage results helps you to verify that your test files are exercising

the algorithm adequately. If the code coverage is inadequate, modify the test files or add
more test files to increase coverage. If you simulate multiple test files in one run, the app
displays cumulative coverage. However, if you specify multiple test files, but run them
one at a time, the app displays the coverage of the file that ran last.

The app displays a color-coded coverage bar to the left of the code.

8-5
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alal
12
13
14
15
1a
17
18
13
20
21
22
23
24
25
26
27
28
29
30
30
32
33
34
35
36
37
38
39
40

41
a2

persistent curre 1'11:_5 tate

if isempty( current state )

end

current state = 51;

% switch to new state based on the walue state register

switch uint8( current state )

case 51
% wvalue of output
if (&)
Z = true;
current_state
else
Z = false;
current state(
end
case 52
if (&)
Z = false;
current_state |
else
Z = true;
current_state (
end
case 53
if (&)
Z = fal=e;
current state |
else
Z = true;
current_state |

A

This table describes the color coding.

Green

Izl

depend=s both on =state and inputs

One of the following situations:
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Coverage Bar
Color

Indicates

The entry-point function executes multiple times and the code
executes more than one time.

* The entry-point function executes one time and the code executes
one time.

Different shades of green indicate different ranges of line execution
counts. The darkest shade of green indicates the highest range.

Orange The entry-point function executes multiple times, but the code
executes one time.
Red Code does not execute.

When you place your cursor over the coverage bar, the color highlighting extends over
the code. For each section of code, the app displays the number of times that the section

executes.
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11
12
13 current state = 51:; 1 calls

else

Z = true;

current state( 1 )
end

¥ = false:;
current_state{ 1 }
else

Z = true;

current_state{ 1 }
end

To verify that your test files are testing your algorithm over the intended operating
range, review the code coverage results.

Coverage Bar Action
Color

Green If you expect sections of code to execute more frequently than the

coverage shows, either modify the MATLAB code or the test files.

Orange This behavior is expected for initialization code, for example, the
initialization of persistent variables. If you expect the code to execute
more than one time, either modify the MATLAB code or the test files.

If the code that does not execute is an error condition, this behavior
is acceptable. If you expect the code to execute, either modify the

Red
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Coverage Bar Action
Color

MATLAB code or the test files. If the code is written conservatively
and has upper and lower boundary limits, and you cannot modify
the test files to reach this code, add static minimum and maximum
values. See “Computing Derived Ranges” on page 8-10.

Code coverage is on by default. Turn it off only after you have verified that you have
adequate test file coverage. Turning off code coverage can speed up simulation. To turn
off code coverage, on the Convert to Fixed Point page:

Click the Analyze arrow ﬂ
2 Clear the Show code coverage check box.

Proposing Data Types

The app proposes fixed-point data types based on computed ranges and the word length
or fraction length setting. The computed ranges are based on simulation range data,
derived range data (also known as static ranges), or both. If you run a simulation and
compute derived ranges, the app merges the simulation and derived ranges.

Note: You cannot propose data types based on derived ranges for MATLAB classes.

You can manually enter static ranges. These manually entered ranges take precedence
over simulation ranges and the app uses them when proposing data types. You

can modify and lock the proposed type so that the tool cannot change it. For more
information, see “Locking Proposed Data Types” on page 8-11.

Running a Simulation

During fixed-point conversion, the app generates an instrumented MEX function for
your entry-point MATLAB file. If the build completes without errors, the app displays
compiled information (type, size, complexity) for functions and variables in your code.
To navigate to local functions, click the Functions tab. If build errors occur, the app
provides error messages that link to the line of code that caused the build issues. You
must address these errors before running a simulation. Use the link to navigate to
the offending line of code in the MATLAB editor and modify the code to fix the issue.
If your code uses functions that are not supported for fixed-point conversion, the app

8-9
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8-10

displays them on the Function Replacements tab. See “Function Replacements” on
page 8-22.

Before running a simulation, specify the test file or files that you want to run. When you
run a simulation, the app runs the test file, calling the instrumented MEX function. If
you modify the MATLAB design code, the app automatically generates an updated MEX
function before running a test file.

If the test file runs successfully, the simulation minimum and maximum values and the
proposed types are displayed on the Variables tab. If you manually enter static ranges
for a variable, the manually entered ranges take precedence over the simulation ranges.
If you manually modify the proposed types by typing or using the histogram, the data
types are locked so that the app cannot modify them.

If the test file fails, the errors are displayed on the Qutput tab.

Test files must exercise your algorithm over its full operating range. The quality of the
proposed fixed-point data types depends on how well the test file covers the operating
range of the algorithm with the accuracy that you want. You can add test files and select
to run more than one test file during the simulation. If you run multiple test files, the
app merges the simulation results.

Optionally, you can select to log data for histograms. After running a simulation, you
can view the histogram for each variable. For more information, see “Log Data for
Histogram” on page 8-20.

Computing Derived Ranges

The advantage of proposing data types based on derived ranges is that you do not have to
provide test files that exercise your algorithm over its full operating range. Running such
test files often takes a very long time.

To compute derived ranges and propose data types based on these ranges, provide
static minimum and maximum values or proposed data types for all input variables.

To improve the analysis, enter as much static range information as possible for other
variables. You can manually enter ranges or promote simulation ranges to use as static
ranges. Manually entered static ranges always take precedence over simulation ranges.

If you know what data type your hardware target uses, set the proposed data types to
match this type. Manually entered data types are locked so that the app cannot modify
them. The app uses these data types to calculate the input minimum and maximum
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values and to derive ranges for other variables. For more information, see “Locking
Proposed Data Types” on page 8-11.

When you select Compute Derived Ranges, the app runs a derived range analysis to
compute static ranges for variables in your MATLAB algorithm. When the analysis is
complete, the static ranges are displayed on the Variables tab. If the run produces +/-
Inf derived ranges, consider defining ranges for all persistent variables.

Optionally, you can select Quick derived range analysis. With this option, the app
performs faster static analysis. The computed ranges might be larger than necessary.
Select this option in cases where the static analysis takes more time than you can afford.

If the derived range analysis for your project is taking a long time, you can optionally set
a timeout. When the timeout is reached, the app aborts the analysis.

Locking Proposed Data Types

You can lock proposed data types against changes by the app using one of the following
methods:

* Manually setting a proposed data type in the app.
* Right-clicking a type proposed by the tool and selecting Lock computed value.

The app displays locked data types in bold so that they are easy to identify. You can
unlock a type using one of the following methods:

*  Manually overwriting it.

* Right-clicking it and selecting Undo changes. This action unlocks only the selected
type.

* Right-clicking and selecting Undo changes for all variables. This action
unlocks all locked proposed types.

Viewing Functions

During the Convert to Fixed Point step of the fixed-point conversion process, you can
view a list of functions in your project in the left pane. This list also includes function
specializations and class methods. When you select a function from the list, the MATLAB
code for that function or class method is displayed in the code window and the variables
that they use are displayed on the Variables tab.
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After conversion, the left pane also displays a list of output files including the fixed-
point version of the original algorithm. If your function is not specialized, the app
retains the original function name in the fixed-point file name and appends the fixed-
point suffix. For example, here the fixed-point version of ex_2ndOrder_Ffilter.mis
ex_2ndOrder_filter_fixpt.m.

% Fixed-Point Converter - ex_2ndOrder filter.prj EI@
»)) Convert to Fixed Point SETTINGS v ANALYZE v CONVERT TEST »

W Source Code — = 6[-]function y = ex 2ndOrder filter fixpt (x) %#codegen -
€3] & 2ndOrder_filter 7 fm = get fimath();
7
9 persistent =
10 if isempty(z)
11 z = fi(zeros(2,1), 1, 16, 15, fm):
12 end
13 % [b,a]l = butter(2, 0.25)
14 b = fi([0.0976310729378175, 0.195262145875635, 0.0976310729378175], 0, 16, 18, fm): =
15 a = fif[ 1, -0.942809041582063, 0.3333333333333333], 1, 16, 14, fm):
16
17
18 v = fi(zeros(size(x)), 1, 16, 14, fm):
19 for i=1l:length (=)
20 y(i} = b(1l)*=x(i) + z(1):
21 z(1) = fi_signed(b(2)*x (i) + z(2)} - a(2) * y(i):
22 z(2) = fi_signed(b(3)*x (1)) - a(3) * y(i):
23 end
24 “end
25
-

@ ex_2ndOrder_filter_fixpt.m 2

fﬂ ex_2ndOrder_filter_wrapper_fixpt.r 2 [ EMEElEn 7 = el 5] il
o] ex_2ndOrder_filter_report.html = EEEEE-ANLImRY "EETE )5

1 ex_ 2ndOrder filter fixpt_args.mat  Variables | Function Replacements | Qutput

ﬂ ex_2ndOrder filter_float_mecmes

ﬂ ex 2ndOrder filter wrapper_fixpt_ Variable Type Sim Min Sim Max Whole Number  Proposed Type
-
% 1256 double -1 1 Mo nummerictypell, 16, 14)
(=] E
¥ 1256 double -0.97 106 Mo numerictypedl, 16, 14)
=
z 2x1double -0.89 0.94 Mo numerictypedl, 16, 15)
] M 3 =] -

&) Validation succeeded

Classes

The app displays information for the class and each of its methods. For example, consider
a class, Counter, that has a static method, MAX_VALUE, and a method, next.

If you select the class, the app displays the class and its properties on the Variables tab.
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1 classdef Counter < handle =
2 properties
) Counter > next 3 Value
€3 Counter > MAX_VALUE 4 end
) use_counter 5
& methods (Static)
7 function t = MAX VALUE ()
& t = 128;
9 end
10 end
11
12 methods
13 function this = Counter|() L
14 this.Value = 0; 3
15 end
16
17 function v = next(this)
18 v = this.Value;
139 if this.Value == this.MRX VALUE
20 this.Value = 0;
n s1se
) Counter_fixpt.m 22 this.Value = this.Value + 1;
&) use_counter_fixpt.m 23 end
fﬂ use_counter_wrapper_fixpt.m 24 end
9] use_counter_report.html 25 end
H use_counter_fixpt_args.mat 26 end s
ﬂ use_counter_float_mex.mexw4 27 S

o
:lusa_muntar_wrapper_f\xpt_mex.w Type Walidation Output ™| Variables | Function Replacernents

Variable Type Sim Min Sim Max Static Min Static Max Whole Nu...  Proposed Type
4 Qutput
4 this Counter Unknown Unknown
Walue double 1] 128 Wes nurmerictypell, 8, 0)
3
Next

If you select a method, the app displays only the variables that the method uses.
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1 classdef Counter < handle
Counter > Counter 2 properties
Counter > next 3 Value
d =na
use_counter 5
& methods (Static)
7 function t = MAX WVALUE ()
& t = 1